On the general structure of optimal investment and consumption under small transaction costs heuristics and rigorous results

Jan Kallsen

Universität zu Kiel joint work with Johannes Muhle-Karbe and Shen Li

Angers, September 3, 2013

- 4 Towards rigorous proofs
- 5 Conclusion and outlook

- 2 Results
- 3 Heuristics
- 4 Towards rigorous proofs
- 5 Conclusion and outlook

The setup

Itô process with proportional transaction costs

• Risky asset:

$$dS_t = b_t^S dt + \sigma_t^S dW_t$$

Wealth process:

$$X_t^{\varepsilon}(\psi^{\varepsilon}, k^{\varepsilon}) = x + \int_0^t \psi_s^{\varepsilon} dS_s - \int_0^t k_s^{\varepsilon} ds + \Psi_t - \int_0^t \varepsilon_s d\|\psi^{\varepsilon}\|_s,$$

where

- ψ_t^{ε} trading strategy (= number of shares),
- k_t^{ε} consumption rate,
- x initial endowment,
- Ψ_t random endowment stream, e.g. $\Psi_t = 0$
- $\varepsilon_t = \varepsilon \mathcal{E}_t$ proportional transaction costs, e.g. $\mathcal{E}_t = S_t$
- ε is supposed to be "small."

Maximising expected utility

under small proportional transaction costs

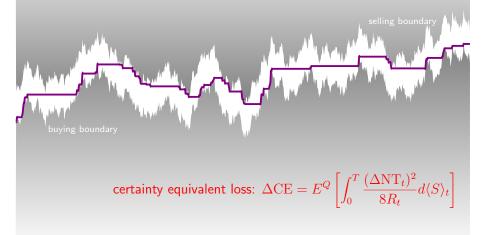
Goal:

$$\max_{(\psi^{\varepsilon},k^{\varepsilon})} E\left[\int_0^T u_1(t,k_t^{\varepsilon})dt + u_2(X_T^{\varepsilon}(\psi^{\varepsilon},k^{\varepsilon}))\right]$$

with possibly random utility functions $u_1(t, \cdot), u_2(\cdot)$

 More precisely: determine leading-order correction to frictionless problem (ε = 0) for small costs ε

width of no-trade corridor: $\Delta NT_t = \sqrt[3]{12R_t \frac{d\langle \varphi \rangle_t}{d\langle S \rangle_t}} \varepsilon_t$



Known general structure

and some references

- There is a no-trade region around the frictionless optimiser.
- Do nothing while portfolio is inside no-trade region.
- Do infinitesimal trades at boundary of no-trade region.
- Width of the no-trade region is of order $\varepsilon^{1/3}$.
- (Certainty equivalent of) utility loss is of order $\varepsilon^{2/3}$.
- Some references: Magill and Constantinides (1976), Constantinides (1986), Dumas and Luciano (1991), Taksar et al. (1988), Davis and Norman (1990), Shreve and Soner (1994) and many more
- References on small costs: Shreve and Soner (1994), Whalley and Willmott (1997), Janeček and Shreve (2004), Goodman and Ostrov (2010), Bichuch (2011), K. and Muhle-Karbe (2012), Martin (2012), Soner and Touzi (2012), Possamaï et al. (2012), and more

The problem

- 4 Towards rigorous proofs
- 5 Conclusion and outlook

Leading-order asymptotics

• Asymptotic no-trade region: $[\overline{NT}_t - \Delta NT_t, \overline{NT}_t + \Delta NT_t]$,

$$\overline{\mathsf{NT}_{t}} = \varphi_{t} + \varphi_{t}'(X_{t}^{\varepsilon}(\varphi^{\varepsilon}, \kappa^{\varepsilon}) - X_{t}(\varphi, \kappa)))$$
$$\Delta NT_{t} = \sqrt[3]{\frac{3R_{t}}{2}\frac{d\langle\varphi\rangle_{t}}{d\langle S\rangle_{t}}\varepsilon_{t}}}$$

Asymptotic consumption rate:

$$\kappa_t^{\varepsilon} = \kappa_t + \kappa_t'(X_t^{\varepsilon}(\varphi^{\varepsilon}, \kappa^{\varepsilon}) - X_t(\varphi, \kappa)),$$

where

- φ'_t derivative of frictionless optimal portfolio wrt. time-*t* wealth,
- κ'_t derivative of frictionless optimal consumption wrt. time-*t* wealth,
- R_t indirect risk tolerance of the frictionless problem

Indirect risk tolerance R_t

of the frictionless problem

$$R_t := -\frac{U'(t, X_t)}{U''(t, X_t)}$$

for indirect utility

$$U(t,x) := \sup_{(\psi_t,k_t)_{t \in [t,T]}} E_t \left[\int_t^T u_1(s,k_s) ds + u_2 \left(x + \int_t^T \psi_s dS_s - \int_t^T k_s ds + \Psi_t \right) \right]$$

Compare Kramkov and Sîrbu (2006), Soner and Touzi (2012) • R yields φ' , κ' via

$$\varphi_t' = \frac{d\langle R, S \rangle_t}{R_t d\langle S \rangle_t}, \quad \kappa_t' = \frac{r_t}{R_t}$$

with direct risk tolerance

$$r_t:=-\frac{u_1'(t,\kappa_t)}{u_1''(t,\kappa_t)}.$$

Indirect risk tolerance R_t as solution to a BSDE

R is solution to quadratic BSDE

$$dR_t = \left(\frac{\zeta_t^{\top}\zeta_t}{R_t} - \frac{(\sigma_t^{\top}\zeta_t)^2}{R_t\sigma_t^{\top}\sigma_t} - r_t\right)dt + \zeta_t dW_t^Q, \quad R_T = -\frac{u_2'(X_T)}{u_2''(X_T)}$$

if

- Q dual minimiser for frictionless utility maximisation problem,
- filtration generated by *d*-dimensional Brownian motion W^Q,
 dS_t = σ_tdW_t^Q.

Indirect risk tolerance R_t

for standard utility functions without random endowment

• Exponential utility $u_2(x) = -e^{-\rho x}$ and $u_1(t, x) = -e^{\delta(T-t)}e^{-\rho x}$:

$$R_t = \frac{1+T-t}{p},$$

$$\varphi'_t = 0, \quad \kappa'_t = \frac{1}{1+T-t}$$

$$\overline{\mathsf{NT}}_t = \varphi_t$$

• Power utility $u_2(x) = \frac{x^{1-\rho}}{1-\rho}$ and $u_1(t,x) = -e^{\delta(T-t)}\frac{x^{1-\rho}}{1-\rho}$:

$$egin{aligned} m{R}_t &= rac{X_t}{p}, \ arphi_t &= rac{arphi_t}{X_t}, \quad \kappa_t' = \mathbf{1}, \end{aligned}$$

no-trade region centered in relative terms.

Leading-order asymptotics

Asymptotic certainty equivalent of utility loss

$$E^{Q}\left[\int_{0}^{T}\frac{(\Delta \mathsf{NT}_{t})^{2}}{2R_{t}}d\langle S\rangle_{t}\right]$$

with dual minimiser Q of frictionless problem

(2/3 loss due to transaction costs, 1/3 loss due to displacement, cf. Rogers 2004)

Implied trading volume

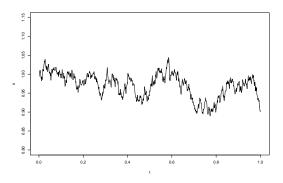
$$\|\varphi^{\varepsilon}\|_{T} \sim \int_{0}^{T} \sqrt[3]{\frac{16}{3R_{t}} \left(\frac{d\langle\varphi\rangle_{t}}{d\langle S\rangle_{t}}\right) \frac{1}{\varepsilon_{t}}} d\langle S\rangle_{t}$$

The problem

2 Results

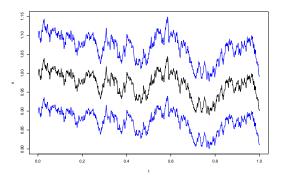
- 4 Towards rigorous proofs
- 5 Conclusion and outlook

(Cvitanić and Karatzas 1996, Loewenstein 2000, ...)



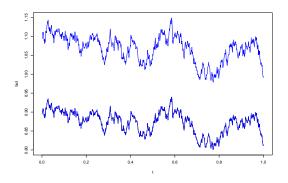
 General priciple: portfolio optimization in market with transaction costs

(Cvitanić and Karatzas 1996, Loewenstein 2000, ...)



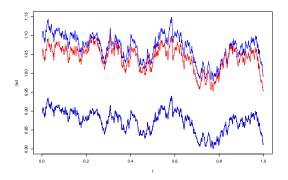
 General priciple: portfolio optimization in market with transaction costs

(Cvitanić and Karatzas 1996, Loewenstein 2000, ...)



 General priciple: portfolio optimization in market with transaction costs

(Cvitanić and Karatzas 1996, Loewenstein 2000, ...)



 General priciple: portfolio optimization in market with transaction costs

in the terminal wealth case $u_1 = 0$ without random endowment

Look for

- strategy φ_t^{ε} ,
- price process $\widetilde{S}_t^{\varepsilon} \in [\underline{S}_t, \overline{S}_t]$,
- process Z_t^{ε} ,
- which satisfy
 - $Z_T^{\varepsilon} = u_2'(x + \varphi^{\varepsilon} \cdot \widetilde{S}_T^{\varepsilon}),$
 - Z^{ε} martingale,
 - $Z^{\varepsilon}\widetilde{S}^{\varepsilon}$ martingale,
 - φ^{ε} changes only when $\widetilde{S}_{t}^{\varepsilon} \in \{\underline{S}_{t}, \overline{S}_{t}\}.$

Then φ^{ε} is the optimal portfolio.

Optimality of φ^{ε} informally

For any competitor ψ we have

$$\begin{split} & E[u(V_T(\psi))] \le E[u(x + \psi \bullet \widetilde{S}_T^{\varepsilon})] \\ & \le E[u(x + \varphi^{\varepsilon} \bullet \widetilde{S}_T^{\varepsilon})) + E\Big[u'(x + \varphi^{\varepsilon} \bullet \widetilde{S}_T^{\varepsilon})((\psi - \varphi^{\varepsilon}) \bullet \widetilde{S}_T^{\varepsilon})\Big] \\ & = E[u(V_T(\varphi^{\varepsilon}))] + E\Big[Z_T^{\varepsilon}((\psi - \varphi^{\varepsilon}) \bullet \widetilde{S}_T^{\varepsilon})\Big] \\ & = E[u(V_T(\varphi^{\varepsilon}))]. \end{split}$$

(Second inequality follows from $u(y) \le u(x) + u'(x)(y - x)$.)

Approximate solution

Look for

- strategy φ^{ε} ,
- price process $\widetilde{S}_t^{\varepsilon} \in [\underline{S}_t, \overline{S}_t]$,
- process Z^{ε} ,

which satisfy

•
$$Z_T^{\varepsilon} = u'(x + \varphi^{\varepsilon} \cdot \widetilde{S}_T^{\varepsilon}) + O(\varepsilon),$$

- Z^{ε} has drift $o(\varepsilon^{2/3})$,
- $Z^{\varepsilon}\widetilde{S}^{\varepsilon}$ has drift $O(\varepsilon^{2/3})$,

• φ^{ε} changes only when $\widetilde{S}_{t}^{\varepsilon} \in \{\underline{S}_{t}, \overline{S}_{t}\}.$

Then φ^{ε} is optimal to the leading order.

Approximate optimality of φ^{ε} informally

For any competitor ψ^{ε} with $\psi^{\varepsilon} - \varphi = o(1)$ we have

$$\begin{split} & E[u(V_{T}(\psi^{\varepsilon}))] \leq E[u(x+\psi^{\varepsilon} \cdot \widetilde{S}_{T}^{\varepsilon})] \\ & \leq E[u(x+\varphi^{\varepsilon} \cdot \widetilde{S}_{T}^{\varepsilon})] + E\left[u'(x+\varphi^{\varepsilon} \cdot \widetilde{S}_{T}^{\varepsilon})((\psi^{\varepsilon}-\varphi^{\varepsilon}) \cdot \widetilde{S}_{T}^{\varepsilon})\right] \\ & = E[u(V_{T}(\varphi^{\varepsilon}))] + E\left[Z_{T}^{\varepsilon}((\psi^{\varepsilon}-\varphi^{\varepsilon}) \cdot \widetilde{S}_{T}^{\varepsilon})\right] + o(\varepsilon^{2/3}) \\ & = E[u(V_{T}(\varphi^{\varepsilon}))] + o(\varepsilon^{2/3}). \end{split}$$

Compare with

$$E[u(V_T(\varphi^{\varepsilon}))] - E[u(x + \varphi \bullet \widetilde{S}_T)] = O(\varepsilon^{2/3}).$$

The problem

2 Results

3 Heuristics

- 4 Towards rigorous proofs
- 5 Conclusion and outlook

Itô process

$$dS_t = b_t^S dt + \sigma_t^S dW_t$$

- Exponential utility $u(x) = -e^{-\rho x}$ of terminal wealth
- Transaction costs $\varepsilon_t = \varepsilon S_t$
- Maximise

$$CE(X_T(\psi)) = -\frac{1}{\rho} \log E \left[\exp(-\rho X_T(\psi))\right]$$

Assumptions (sketched)

- There exists EMM for S with finite relative extropy.
 → MEMM Q and frictionless optimiser φ exist.
- φ and $\frac{d\langle \varphi \rangle}{d\langle S \rangle}$ are Itô processes.
- A number of integrability conditions, mostly of the kind

$$E_Q\left[\sup_{t\in[0,T]}g_t^n
ight]<\infty,n\in\mathbb{N}$$

for some processes g

Statement

- Define $\triangle NT$ as before.
- There exists φ^ε = φ + Δφ = φ^{ε↑} φ^{ε↓} with values in [φ ΔNT, φ ΔNT], where φ^{ε↑}, φ^{ε↓} increase only at the boundary.

Set

$$\pi^arepsilon:=\inf\left\{t\in [0,T]:|X_t(arphi^arepsilon)-(x+arphiullet S_t)|>1 ext{ or } |X_t(arphi^arepsilon)|>arepsilon^{-4/3}
ight\}$$

Then φ^ε1_[0,τ^ε] is optimal to the leading order with certainty equivalent loss as stated earlier.

Idea of the proof (cf. Henderson 2002, Kramkov & Sirbu 2006)

- Existence of the process Δφ as solution to a Skorohod problem with reflection.
- 2 Definition of $\Delta \tilde{S}$ as a function of $\Delta \varphi$.
- Leading-order approximation of the corresponding expected utility by Taylor expansion.
- Modify candidate Z^{ε} to an EMM \tilde{Z}^{ε} for \tilde{S}^{ε} .
- Some compute leading-order approximation of Lagrange dual function at \tilde{Z}^{ε} . Observe that lower and upper bound coincide to leading order.
- Solution Replace $\Delta \varphi$ in expression for certainty equivalent loss by ΔNT , using the ergodic property of reflected Brownian motion.

The problem

- 2 Results
- 3 Heuristics
- 4 Towards rigorous proofs
- 5 Conclusion and outlook

Main conclusions

concerning leading order asymptotics

- Robust formulas for no-trade region, consumption rate, utility loss, implied trading volume
- In some sense myopic results
- Important ingredients of frictionless problem:
 - indirect risk tolerance R_t ,
 - activity rate or generalized gamma $\frac{d\langle \varphi \rangle_t}{d\langle S \rangle_t}$
- 2/3 loss due to transaction costs, 1/3 loss due to displacement

Next steps

Things we would like to consider

- Rigorous proofs in full generality.
- Generalise results to the multivariate case.
- Study alternative cost structures.