Credit-Equity Modeling under a Latent Lévy Firm Process

Masaaki Kijima ^a Chi Chung Siu ^b

^aGraduate School of Social Sciences, Tokyo Metropolitan University

^bUniversity of Technology, Sydney

September 3, 2013

Kijima and Siu (TMU)

Credit-Equity Modeling

Plan of My Talk

Introduction: Motivation, Literature Review

- Equity Options, Credit Modeling, Credit-Equity Models
- CreditGrades, Latent Credit Model
- Our Model
 - Firm Value, Equity Value
 - Regime-Switching (mid-term spread), Jumps (short-term spread)
 - CDS, Equity Option Pricing
- Oumerical Examples
 - CDS, Equity Option
- Onclusion, Future Research

Motivation

- Recent credit crisis shows the intimate relationship between the credit and equity markets.
- For example, during the credit crisis, both CDS premiums and equity volatilities were at their historical high.
- However, until recently, the equity and credit modelings are two separate themes in the finance literature.
- The difficulty to construct the credit-equity model stems from the fact that the debt and equity possess different properties.
- Hence, new attempts are required to construct the credit-equity modeling in a unified manner.

Literature Review: Equity Options

- Mostly, based on Stochastic Differential Equations (SDEs)
 - Diffusion: Black-Scholes Model, Local Volatility Model
 - Stochastic Volatility (SV): Heston (1993), etc.
 - Jump Diffusion: Merton (1976), Kou (2002), etc.
 - Lévy Process: Ask Professor Vostrikova
 - Regime Switching: Kijima and Yoshida (1993), Buffington and Elliott (2002), etc.
- Strength: Highly liquid markets (equity and equity options)
- Shortcoming : No mention about the issuer's (firm) credit exposure

Literature Review: Credit Modeling

Reduced-form approach

- Jarrow and Turnbull (1995), Madan and Unal (1998a), Duffie and Singleton (1999), etc.
- Strength: Analytical tractability and ability of generating a flexible and realistic term structure of credit spreads
- Shortcoming 1: Exogenous hazard rate process
- Shortcoming 2: Default mechanism is not related to the firm value

Structural approach

- Merton (1974), Black and Cox (1976), Leland (1994), etc.
- Strength: Economic appeal-links firm value with debt and equity
- Shortcoming 1: Difficult to incorporate more realistic features without sacrificing tractability
- Shortcoming 2: Difficult to price equity or equity options

Reduced-form approach

• Mendoza-Arriaga et al. (2010) and the references therein

Structural approach

- CreditGrades model by Finger et al. (2002) and its extensions
 - by Sepp (2006) for double-exponential jump-diffusion model
 - by Ozeki et al. (2011) for general spectrally-negative Lévy process
- Time-changed Brownian motion approach by Hurd and Zhou (2011)
- Latent model by Kijima et al. (2009)

Literature Review: CreditGrades

Ordinary structural approach

- Consider a corporate firm that issues a debt and an equity.
- $\bullet\,$ Let D and S be the debt and equity values per share, respectively.
- Let V be the firm value per share, so that V = D + S by the basic accounting assumption.
- V is modeled by a SDE and the default occurs when V reaches a default threshold.
- ullet D and S are evaluated as contingent claims written on V.
- CreditGrades model by Finger et al. (2002)
 - D is the discounted face value of debt and S is modeled by a GBM.
 - V is given by V = D + S, and default is the first passage time of V.
 - Strength: Easy to implement and extend.
 - Shortcoming 1: D is irrelevant to the credit structure.
 - Shortcoming 2: Credit quality is essentially equal to the equity value.

Literature Review: Latent Credit Model

Latent model

- Introduce the notion of the marker process that is observable and correlated to the actual status process (unobservable).
- 2 Latent structural model by Kijima et al. (2009)
 - The actual firm status is latent.
 - Debt value is given in terms of the actual firm status.
 - Equity value is obtained as a residual value as in Merton (1974).
 - Strength: Economically appealing
 - Shortcoming 1: The equity has a maturity as in Merton (1974).
 - Shortcoming 1: The pricing of equity options is very complicated.

Our Model: Overview

- Structural approach: treat the firm value as a latent variable
- Extension of Kijima et al. (2009) to include jumps (for short-term credit spread) and regime switch (for mid-term spread)
- Source of information: Equity value
- Objective: Price CDS and Equity Option with default feature under a joint framework.
- Contributions: Our model
 - Introduces the credit status of the firm into the equity process.
 - Serves as a theoretical support to the existing empirical analyses on the explanatory power of equity's historical and option-implied volatilities to the CDS spread variation.
 - Has a flexibility in explaining both the short-term and mid-term behaviors of the credit spread and implied volatility curves.

Our Model: Firm value process

• At: Actual firm value at time t where

$$A_t = \exp(X_t), \quad t \ge 0$$

- A_t is latent, i.e. unobservable and non-tradable.
- Nature of default: Default epoch au is defined by

$$\tau = \inf\{t \ge 0 : A_t \le \Gamma\} = \inf\{t \ge 0 : X_t \le L\}$$

for some $\Gamma = e^{L}$ (default barrier).

• Remark: Easy to extend to include a stochastic boundary.

Our Model: Equity value process

- S_t : Equity value of the firm at time t
- S_t is observable to investors and tradable.
- Let $Y_t = \log S_t$, and assume that (for each regime)

$$Y_t = \rho X_t + Z_t$$

- Z_t : Non-firm specific shocks, independent of X_t (given each regime).
- ρ : The impact factor of firm's credit exposure on equity

Regime-Switching

- Introduce the regime-switching for the mid-term spread.
- Let $\{J_t:t\geq 0\}$ be a Markov chain on state space E_{\cdot} .

(

- E is finite and contains d elements, i.e., $E = \{1, 2, \dots, d\}$.
- Let \mathbf{Q} be the intensity matrix of J_t with respect to the Lebesgue measure, i.e.,

$$\mathrm{Q} = \left\{ q_{ij}
ight\}_{i,j \in E}$$

where

$$q_{ii} = -\sum_{i
eq j} q_{ij}$$

Model of Log-Firm Value

• Let $X_t = \log A_t$ be defined by

$$egin{array}{rcl} X_t &=& \displaystyle\int_0^t b^X(J_s) \mathrm{d}s + \displaystyle\int_0^t \sigma^X(J_s) \mathrm{d}W^X_s \ &&+ \displaystyle\sum_{j \in E} \displaystyle\int_0^t \mathbf{1}_{\{J_s=j\}} \mathrm{d}N^X_s(j) \end{array}$$

where, given $J_t = j \in E$, $b^X(J_t) \equiv b_j^X$ is a drift, $\sigma^X(J_t) \equiv \sigma_j^X$ is a volatility, and $\{N_t^X(j) : t \ge 0\}$ is a compound Poisson process. • $N_t^X(j)$ has arrival rate λ_j^X and double-exponential jumps Y_j^X with distribution $\nu_j^X(dy)$, where

$$\begin{array}{lll} \nu_{j}^{X}(\mathrm{d}y) &=& \lambda_{j}^{X} \Big[p_{j}^{X} \eta_{j1}^{X} \mathrm{e}^{-\eta_{j1}^{X}y} \mathbf{1}_{\{y \geq 0\}} \\ && \quad + (1-p_{j}^{X}) \eta_{j2}^{X} \mathrm{e}^{\eta_{j2}^{X}y} \mathbf{1}_{\{y < 0\}} \Big] \mathrm{d}y \end{array}$$

It is well known that the moment generating function (MGF) of X_t , $\mathbb{E}[\exp(uX_t)]$, is given by

$$\mathbb{E}[\exp(uX_t)]\equiv\exp\left(\mathsf{K}^X[u]t
ight)$$

where

$$\mathsf{K}^X[u] \equiv \{\kappa^X_j(u)\}_{\mathsf{diag}} + \mathbf{Q}$$

with

$$\kappa_j^X(u) = b_j^X u + rac{(\sigma_j^X u)^2}{2} + \lambda_j^X \left(rac{p_j^X \eta_{j1}^X}{\eta_{j1}^X - u} + rac{(1 - p_j^X) \eta_{j2}^X}{\eta_{j2}^X + u} - 1
ight)$$

for double-exponential jumps.

Model of Non-Firm Specific Shock

- Recall that $Y_t = \log S_t$ and, for each regime, $Y_t = \rho X_t + Z_t$.
- We assume that Z_t has the following canonical representation:

$$egin{array}{rcl} Z_t &=& \displaystyle\int_0^t b^Z(J_s) \mathrm{d}s + \displaystyle\int_0^t \sigma^Z(J_s) \mathrm{d}W^Z_s \ &&+ \displaystyle\int_0^t \int_{\mathbb{R}} y(\mu^Z(J_s) -
u^Z(J_s))(\mathrm{d}y) \mathrm{d}s \end{array}$$

where, for $J_t = j$, $b^Z(J_t) \equiv b_j^Z$ is a drift, $\sigma^Z(J_t) \equiv \sigma_j^Z$ is a volatility, $\mu^Z(J_t) \equiv \mu_j^Z$ is a random jump measure, and $\nu^Z(J_t) \equiv \nu_j^Z$ is the compensator of μ_j^Z .

• Z_t can be a general Lévy, because it is irrelevant to default.

The MGF $\mathbb{E}[\exp(uZ_t)]$ is given by

$$\mathbb{E}[\exp(uZ_t)]\equiv\exp\left(\mathsf{K}^Z[u]t
ight)$$

where

$$\mathsf{K}^{Z}[u] \equiv \{\kappa_{j}^{Z}(u)\}_{\mathsf{diag}} + \mathrm{Q}$$

with

$$\kappa_j^Z(u) = b_j^Z u + rac{1}{2} (\sigma_j^Z u)^2 + \int_{\mathbb{R}} (\mathrm{e}^{uy} - 1 - y \mathbbm{1}_{\{|y| \leq 1\}})
u_j^Z(\mathrm{d}y)$$

No-Arbitrage Condition

Assume $J_t = j$. The discounted process $\bar{S}_t \equiv e^{-rt}S_t$ is a \mathbb{P} -martingale with respect to \mathcal{F}_t if and only if

$$\begin{split} \rho b_j^X + b_j^Z &= r - \frac{1}{2} (\rho \sigma_j^X)^2 - \frac{1}{2} (\sigma_j^Z)^2 \\ &- \lambda_j^X \left(\frac{p_j^X \eta_{j1}}{\eta_{j1} - \rho} + \frac{(1 - p_j^X) \eta_{j2}^X}{\eta_{j2}^X + \rho} - 1 \right) \\ &- \lambda_j^Z \left(\frac{p_j^Z \eta_{j1}}{\eta_{j1} - 1} + \frac{(1 - p_j^Z) \eta_{j2}^Z}{\eta_{j2}^Z + 1} - 1 \right) \end{split}$$

where r > 0 is the risk-free interest rate.

Credit Default Swap

• Standard CDS premium formula: For $J_0=i\in E$,

$$\begin{split} c_T^{(i)} &= (1-R) \frac{\int_0^T e^{-rt} d\mathbb{P}_i(\tau \le t)}{\int_0^T e^{-rt} \mathbb{P}_i(\tau > t) dt} \\ &= (1-R) r \frac{\mathbb{E}_i \left[e^{-r\tau} \mathbf{1}_{\{\tau < T\}} \right]}{1 - \mathbb{E}_i [e^{-r\tau} \mathbf{1}_{\{\tau < T\}}] - e^{-rT} \mathbb{P}_i(\tau > T)} \end{split}$$

where R is the recovery rate and r is the risk-free interest rate.

- Hence, we need to evaluate $\mathbb{E}_i\left[\mathrm{e}^{-r au}\mathbf{1}_{\{ au < T\}}
 ight]$, $\mathbf{i} \in E.$
- Following a similar discussion to Kijima and Siu (2013), these values are obtained as a solution of a linear equation, when jumps are double-exponential.

Short-Term Credit Spread

Lemma

Denote
$$x = -\log(\frac{L}{A_0})$$
 and $J_0 = i$. Then,

$$\lim_{T \downarrow 0} c_T^{(i)} = r(1-R)
u_i^X((-\infty,x])$$

where u_i denotes the Lévy measure under regime *i*.

Implication: Regime-switching Brownian motion alone CANNOT produce non-zero credit spread at $T \downarrow 0$!

 \Rightarrow We need jumps for plausible short-term spreads.

Long-Term Credit Spread

Lemma

Assume $\mathbb{P}[au < \infty] = 1$ and $J_0 = i$. Then,

$$\lim_{T o\infty} c_T^{(i)} = (1-R)rrac{\mathbb{E}_{\Pi}[e^{-r au}]}{1-\mathbb{E}_{\Pi}[e^{-r au}]},$$

where Π denotes the stationary distribution of J_t .

Implication: Impact of the regime-switching factor appears in the medium part of the CDS term structure!

CDS Premium

Corollary

In our model, the CDS premium c is given by

$$c_T^{(i)} = (1 - R)r \frac{P_2^{RS}}{1 - P_2^{RS} - e^{-rT}P_1^{RS}}$$

where $J_0 = i$,

and

$$\mathcal{P}_1^{RS} = \mathcal{L}_T^{-1}\left(rac{1}{a} - rac{1}{a}\mathbb{E}_i[\mathrm{e}^{a au}; J_{ au}]
ight)$$

$$P_2^{RS} = \mathcal{L}_T^{-1}\left(rac{1}{a}\mathbb{E}_i[\mathrm{e}^{-(r+a) au};J_ au]
ight)$$

Here, \mathcal{L}^{-1} denotes the inverse Laplace transform.

Numerical Results

• Model Parameters for X_t :

Base Parameters							
$egin{array}{c c c c c c c c } A_0 & T & r & L & H \ \end{array}$							
100	1	0.05	30	0.5			

Regime 1							
b_1^X	σ_1^X	η_{11}^X	η^X_{12}	p_1^X	λ_1^X	q_1	
0.05	0.4	3	2	0.5	0.5	0.5	
Regime 2							
		Re	egime 2	2			
b_2^X	σ_2^X	$\frac{Re}{\eta_{21}^X}$	η_{22}^X	p_2^X	λ_2^X	q_2	

• Regime 1 (Regime 2, resp.) is of high (low) volatility and bigger (smaller) jumps.

Regime-Switching Factor: BM only

Regime-Switching, Jump-Diffusion

Effect of Regime-Switching Intensity: $q_2 = 0.5$

Summary of Numerical Examples

- Hump and inverted-hump shapes of the CDS curves can be constructed by changing the regime-switching intensities of J_t .
 - Possible explanation: When buying CDS, investors are concerned with

 current state of the firm, and (2) persistence of a firm staying in
 one particular economic/credit regime.
- Short-term spreads become more realistic by the jump effects.
- Introduction of regime-switching, jump-diffusion results in more flexible CDS term structures!

Equity Option

- Recall that $S_t = \exp(Y_t)$ with $Y_t =
 ho X_t + Z_t$
- ullet The call option price written on S under $\{\tau>T\}$ is given by

$$C(S, K, T) = \mathbb{E}[e^{-rT}(S_T - K)^+ \mathbf{1}_{\{\tau > T\}}]$$

= $\mathbb{E}[e^{-rT}(S_T - K)^+]$
 $- \mathbb{E}\left[e^{-rT}(S_T - K)^+ \mathbf{1}_{\{\tau \le T\}}\right]$

Hence, equivalently,

Defaultable call = Non-defaultable call - Down-and-in call

Equity Option Price

Theorem

The double Laplace transform of $\mathbb{E}[e^{-rT}(S_T - K)^+ 1_{\{\tau \leq T\}}]$ with respect to $k = \log K$ and T is obtained as

$$\begin{aligned} \mathcal{L}_{\xi,\beta}(\mathbb{E}[\mathrm{e}^{-rT}(S_T - K)^+ \mathbf{1}_{\{\tau \leq T\}}]) \\ &= \frac{S_0^{\xi+1}}{\xi(\xi+1)} \sum_j \tilde{\mathbb{E}}_i \left[e^{-((\beta+r) - \kappa_j^Z(\xi+1))\tau + (\xi+1)\rho \mathbf{X}_\tau} \mathbf{1}_{\{J_\tau=j\}} \right] \\ &\times \sum_n \left((r+\beta)\mathbb{I} - \left(\left\{ \kappa_j^Z(\xi+1) + \kappa_j^\mathbf{X}(\rho(\xi+1)) \right\}_{diag} + \mathbf{Q} \right) \right)_{jn}^{-1} \end{aligned}$$

where $\tilde{\mathbb{E}}_i$ is the expectation under which Z_t is taken as the numeraire.

Numerical Results

Model Parameters for X_t :

						Regime 1						
Basa Paramotors			b_1^X	σ_1^X	η_{11}^X	η_{12}^X	p_1^X	λ_1^X	q_1			
			0.05	0.4	10	4	0.4	0.5	0.5			
S_0	K	A_0	T			Regime 2					<u>.</u>	
100	90	100	L	0.05	30	b_2^X	σ_2^X	η_{21}^X	η^X_{22}	p_2^X	λ_2^X	q_2
						0.05	0.1	20	10	0.4	1	0.5

Model Parameters for Z_t (double-exponential for simplicity):

Regime 1							
σ_1^Z	η^Z_{11}	η^Z_{12}	p_1^Z	λ_1^Z			
0.1	40	40	0.6	3			
Regime 2							
σ^Z_2	η^Z_{21}	η^Z_{22}	p_2^Z	λ_2^Z			
0.1	60	60	0.4	4			

Impact of Jump Factor

- Regime-switching BM produces symmetric smiles.
- Negative skewness is a common feature found in equity markets.
- The negative skewness is more pronounced as the probability of upper jumps p^X_i decreases, since the probability of default is decreased.
- Regime 1 (Regime 2, resp.) is of high (low) volatility and bigger (smaller) jumps.

Kijima and Siu (TMU)

Effect of ρ without Regime-Switch

- The curvature of IV curve decreases with increasing correlation ρ .
- That is, the increase in ρ augments the negative skewness of IV.
- The negative skewness reflects the credit nature on the equity.

Time Effect

- Volatility curves flatten with increasing maturity T.
- In Regime 1, the IV curve moves downward as it flattens, whereas it elevates as its curvature decreases in Regime 2.
- Of course, they converge to coincide as $T
 ightarrow \infty$.

Summary of Numerical Examples

- Regime-switching and jump factors play a significant role in the equity option with default feature.
- In particular, the IV curve of the high regime decreases, while it increases under the low regime, as the switching-intensity or the maturity lengthens.
- The default probability contributes to the negative skewness of IV.
- However, the degree of negative skewness is limited, in comparison with the reduced-form credit-equity model in Carr and Wu (2010).
- The assumption of independent and stationary increments of Lévy processes makes it inflexible in capturing the IV observed in the market (see Konikov and Madan, 2002).

Conclusion

- Increasing evidence of the linkage between the equity and credit aspects of a corporate firm demands a unified equity-credit model.
- We propose one approach to the problem: *Latent* structural model.
- Extend Kijima et al. (2009) to include jumps and regime-switch.
- Application: Price CDS and equity option under one framework.
- Strength: Separate jumps and regime-switch effects.
- Strength: More flexible CDS term structures and IV surfaces.
- Strength: Clarify the role of impact factor ρ to the skewness of volatility smiles.
- Numerical scheme: Inverse Laplace transform is very easy and stable.

Future Research

- Need to develop a calibration scheme.
- Want to extract credit quality (e.g., distance to default) under the physical measure from the marker process (i.e., equity value process).
- These can lead to more empirical works.
- Extend the model to include the Heston-type SV (to increase the negative skewness).
- The pricing of equity default swap, which has both the equity and credit components of a firm.

Thank You for Your Attention