Asymptotics for sums and differences of log-normal random variables

Archil Gulisashvili and **Peter Tankov**

Advanced Methods in Mathematical Finance

Angers, September 8–11, 2013

Outline

- **1** [Introduction](#page-2-0)
- **2** [Left tail of the sum](#page-10-0)
- ³ [Right tail of the difference](#page-22-0)
- **4** [Numerics and Monte Carlo](#page-28-0)
- **6** [Stress testing log-normal portfolios](#page-36-0)

Ξ

 \sim ×.

(□) (f)

 $2Q$

Outline

1 [Introduction](#page-2-0)

- **2** [Left tail of the sum](#page-10-0)
- **3** [Right tail of the difference](#page-22-0)
- **4** [Numerics and Monte Carlo](#page-28-0)
- **6** [Stress testing log-normal portfolios](#page-36-0)

Ξ

∢ ロ ▶ ィ 何 \sim ÷ \sim ×.

Introduction

Consider the random variable X^{β} given by

$$
X^{\beta}=\sum_{k=1}^n \beta_k e^{Y_k}
$$

where β_1, \ldots, β_n are nonzero constants and $Y = (Y_1, \dots, Y_n)$ is a *n*-dimensional Gaussian random variable with the mean $\mu = (\mu_1, \cdots, \mu_n)$ and the covariance matrix \mathfrak{B} with det $\mathfrak{B} \neq 0$, whose elements are denoted by *bij*

 Ω

イロト イ母 トイヨ トイヨ トーヨー

Introduction

Consider the random variable X^{β} given by

$$
X^{\beta}=\sum_{k=1}^n \beta_k e^{Y_k}
$$

where β_1, \ldots, β_n are nonzero constants and $Y = (Y_1, \dots, Y_n)$ is a *n*-dimensional Gaussian random variable with the mean $\mu = (\mu_1, \dots, \mu_n)$ and the covariance matrix \mathfrak{B} with det $\mathfrak{B} \neq 0$, whose elements are denoted by *bij*

- Sums / differences of correlated log-normal random variables appear in financial mathematics, insurance, and many other domains such as, for example, signal processing.
- In finance: models for portfolios and market indices.
- In insurance: aggregate loss from a large num[be](#page-3-0)r [o](#page-5-0)[f](#page-2-0) [c](#page-3-0)[l](#page-4-0)[ai](#page-5-0)[m](#page-1-0)[s.](#page-9-0)

 QQQ

Our aims

Characterize the tail behavior of the distribution function $\mathbb{P}[X^{\beta}\leq x]$ and the density $\rho^{\beta}(x)$ of X^{β}

Approximate rare-event probabilities and risk measures in the multidimensional Black-Scholes model

Understand the conditional law of *Y*₁, ..., *Y*_n given $X^{\beta} \leq x$ ($X^{\beta} \geq x$)

Design efficient Monte Carlo algorithms for precise evaluation of these quantities

Describe the behavior of stocks under stress scenarios for the index

 QQQ

What is to be done

Without loss of generality, it is sufficient to study:

$$
X^{(m)} = \sum_{k=1}^{m} e^{Y_k} - \sum_{k=m+1}^{n} e^{Y_k}, \; m \ge 1.
$$

(□) (f)

E

 $2Q$

What is to be done

Without loss of generality, it is sufficient to study:

$$
X^{(m)}=\sum_{k=1}^m e^{Y_k}-\sum_{k=m+1}^n e^{Y_k},\;m\geq 1.
$$

The support of $X^{(m)}$ is

$$
(-\infty, \infty) \qquad \qquad \text{if} \quad 1 \leq m \leq n-1
$$

\n
$$
(0, \infty) \qquad \qquad \text{if} \quad m = n
$$

\n
$$
(-\infty, 0) \qquad \qquad \text{if} \quad m = 0.
$$

 \Rightarrow we need to study

the Left tail (when $x \to 0$) of the sum $X = \sum_{k=1}^n e^{Y_k}$ and the Right tail (when $x\to +\infty$) of $X^{(m)}$ for $m\geq 1.$

◂**◻▸ ◂╓▸**

Related work: right tail of the sum

- Important in insurance
- For $X \geq x$ it is enough that at least one of Y_i satisfies $e^{Y_i} \geq x$.

∢ ロ ▶ ィ 何

Related work: right tail of the sum

- Important in insurance
- For $X \geq x$ it is enough that at least one of Y_i satisfies $e^{Y_i} \geq x$.
- Asmussen and Rojas-Nandayapa (2008): the asymptotics is correlation-independent and satisfies

$$
P[X > x] \sim m\overline{F}_{\mu,\sigma^2}, \quad \sigma = \max_{k=1,\dots,n} \sigma_k, \quad \mu = \max_{k:\sigma_k = \sigma} \mu_k.
$$

where \overline{F} is the one-dimensional log-normal survival function and $m = \#\{k : \sigma_k = \sigma, \mu_k = \mu\}.$

• This result holds more generally for dependent subexponential random variables (Geluk and Tang, 2009).

 Ω

イロト イ母 トイヨ トイヨ トーヨー

Related work: left tail of the sum

- Important in finance
- For $X \leq x$ it is necessary (not sufficient) that all Y_i satisfy $e^{Y_i} \leq x$.

4 D.K.

Related work: left tail of the sum

- Important in finance
- For $X \leq x$ it is necessary (not sufficient) that all Y_i satisfy $e^{Y_i} \leq x$.
- Asymptotics may depend on correlation; only partial results are available in the literature. Gao et al. (2009) treat the case $n = 2$ and the case of arbitrary *n* under restrictive assumptions on B.

Outline

1 [Introduction](#page-2-0)

2 [Left tail of the sum](#page-10-0)

3 [Right tail of the difference](#page-22-0)

4 [Numerics and Monte Carlo](#page-28-0)

6 [Stress testing log-normal portfolios](#page-36-0)

Ξ

∢ ロ ▶ ィ 何 \sim ÷. \sim 14.1

Notation and preliminaries

Let
$$
\Delta_n := \{ w \in \mathbb{R}^n : w_i \ge 0, i = 1, ..., n, \text{and } \sum_{i=1}^n w_i = 1 \} \}
$$

and $\mathcal{E}(w) = -\sum_{n=1}^{n}$ *i*=1 *w*_i log *w*_i, for $w \in \Delta_n$ with 0 log 0 = 0.

 $2Q$

イロト イ押 トイヨ トイヨ トーヨ

Notation and preliminaries

Let
$$
\Delta_n := \{ w \in \mathbb{R}^n : w_i \ge 0, i = 1, ..., n, \text{and } \sum_{i=1}^n w_i = 1 \} \}
$$

and $\mathcal{E}(w) = -\sum_{n=1}^{n}$ *i*=1 *w*_i log *w*_i, for $w \in \Delta_n$ with 0 log 0 = 0.

We choose $\bar{w} \in \Delta_n$ to be the unique point such that

$$
\bar{w}^{\perp} \mathfrak{B} \bar{w} = \min_{w \in \Delta_n} w^{\perp} \mathfrak{B} w.
$$

⇒ Markowitz minimum variance portfolio

 QQQ

イロト イ押 トイヨ トイヨ トーヨ

Notation and preliminaries

Let
$$
\Delta_n := \{ w \in \mathbb{R}^n : w_i \ge 0, i = 1, ..., n, \text{and } \sum_{i=1}^n w_i = 1 \} \}
$$

and $\mathcal{E}(w) = -\sum_{n=1}^{n}$ *i*=1 *w*_i log *w*_i, for $w \in \Delta_n$ with 0 log 0 = 0.

We choose $\bar{w} \in \Delta_n$ to be the unique point such that

$$
\bar{w}^{\perp} \mathfrak{B} \bar{w} = \min_{w \in \Delta_n} w^{\perp} \mathfrak{B} w.
$$

⇒ Markowitz minimum variance portfolio

With $\overline{l} := \{i \in \{1, ..., n\} : \overline{w}_i > 0\}$ and $\overline{n} := \text{Card } \overline{l}$, assume WLOG that $\bar{l} = \{1, \ldots, \bar{n}\}.$

 $\mathsf{W}\mathsf{e}$ let $\bar\mu\in\mathbb{R}^{\bar n}$ with $\bar\mu_i=\mu_i$ and $\bar{\mathfrak{B}}\in\mathcal{M}_{\bar n}(\mathbb{R})$ with $\bar b_{ij}=b_{ij};$ the elements of $\bar{\mathfrak{B}}^{-1}$ are denoted by \bar{a}_{ij} and $\bar{A}_k := \sum_{j=1}^{\bar{n}} \bar{a}_{kj}$. OQ

Assumption (A)

Our main result requires the following non-degeneracy assumption: (A) For $i = \bar{n} + 1, ..., n$, $(\bm{e}^i-\bar{\bm{w}})^\perp\bm{\mathfrak{B}}\bar{\bm{w}}\neq\bm{0},$ where $e^i \in \mathbb{R}^n$ satisfies $e^i_j = 1$ if $i = j$ and $e^i_j = 0$ otherwise.

 QQ

イロメ イ母メ イヨメ イヨメ

Assumption (A)

Our main result requires the following non-degeneracy assumption:

(A) For
$$
i = \overline{n} + 1, ..., n
$$
,
\n $(e^i - \overline{w})^{\perp} \mathfrak{B} \overline{w} \neq 0$,
\nwhere $e^i \in \mathbb{R}^n$ satisfies $e^i_j = 1$ if $i = j$ and $e^i_j = 0$ otherwise.
\nObserve that

$$
\operatorname{grad} \frac{1}{2} w^{\perp} \mathfrak{B} w = \mathfrak{B} w.
$$

D.

←ロト ←何ト

 299

E

Main result for *X*

Let Assumption (A) hold true. Then, as $x \to 0$,

$$
\mathbb{P}[X \leq x] = \bar{C} \left(\log \frac{1}{x} \right)^{-\frac{1+\bar{n}}{2}} \exp \left\{ -\frac{(\log x - \bar{w}^{\perp}\bar{\mu} - \mathcal{E}(\bar{w}))^2}{2\bar{w}^{\perp}\mathfrak{B}\bar{w}} \right\} \left(1 + O\left(\frac{1}{|\log x|} \right) \right)
$$

where

$$
\begin{aligned} \bar{C} &= \frac{1}{\sqrt{2\pi}\sqrt{\left|\bar{\mathfrak{B}}\right|}}\frac{\sqrt{\bar{w}^{\perp}\mathfrak{B}\bar{w}}}{\sqrt{\bar{A}_{1}\cdots\bar{A}_{\bar{n}}}} \\ &\times \exp\left\{-\frac{1}{2}\sum_{i,j=1}^{\bar{n}}\bar{a}_{ij}\left(\bar{\mu}_{i}-\log\bar{w}_{i}\right)\left(\bar{\mu}_{j}-\log\bar{w}_{j}\right)+\frac{(\bar{w}^{\perp}\bar{\mu}+\mathcal{E}(\bar{w}))^{2}}{2\bar{w}^{\perp}\mathfrak{B}\bar{w}}\right\}.\end{aligned}
$$

ヨメ メヨメ

14.1

K ロ ト K 何 ト

 299

画

Main result for *X*

Let Assumption (A) hold true. Then, as $x \to 0$,

$$
\mathbb{P}[X \leq x] = \bar{C} \left(\log \frac{1}{x} \right)^{-\frac{1+\bar{n}}{2}} \exp \left\{ -\frac{(\log x - \bar{w}^{\perp}\bar{\mu} - \mathcal{E}(\bar{w}))^2}{2\bar{w}^{\perp}\mathfrak{B}\bar{w}} \right\} \left(1 + O \left(\frac{1}{|\log x|} \right) \right)
$$

where

$$
\begin{aligned} \bar{C} &= \frac{1}{\sqrt{2\pi}\sqrt{\left|\bar{\mathfrak B}\right|}} \frac{\sqrt{\bar w^\perp\mathfrak B\bar w}}{\sqrt{\bar A_1\cdots\bar A_{\bar n}}} \\ &\times \exp\left\{-\frac{1}{2}\sum_{i,j=1}^{\bar n}\bar a_{ij}\left(\bar\mu_i-\log \bar w_i\right)\left(\bar\mu_j-\log \bar w_j\right)+\frac{(\bar w^\perp\bar\mu+\mathcal E(\bar w))^2}{2\bar w^\perp\mathfrak B\bar w}\right\}. \end{aligned}
$$

Gao et al. (2009) obtain this result under the assumption that $\bar{w}_i > 0$ for $i = 1, \ldots, n$ by applying multidimensional Laplace method.

• \bar{w} [⊥] $\mathfrak{B}\bar{w}$ \leq min_{*i*} b_{ii} : the left tail of the sum is, in general, thinner, than the tails of the elements.

画

 $2Q$

ヨメ メヨメ

14.1

- $\bar{w}^{\perp} \mathfrak{B} \bar{w} < \min_{i} b_{ii}$: the left tail of the sum is, in general, thinner, than the tails of the elements.
- For a Gaussian random variable *Y* ∼ *N*(*m*, σ²),

$$
\mathbb{P}[e^Y \le x] \sim \frac{\sigma}{\sqrt{2\pi}} \left(\log \frac{1}{x} \right)^{-1} \exp \left\{ -\frac{(\log x - m)^2}{2\sigma^2} \right\}
$$

• The tail of a sum of log-normals may be approximated by a single log-normal variable with

$$
m = \bar{w}^{\perp} \mu - \mathcal{E}(\bar{w})
$$
 and $\sigma^2 = \bar{w}^{\perp} \mathfrak{B} \bar{w}$,

only up to a logarithmic factor.

 QQQ

 \rightarrow 3 \rightarrow 3 \rightarrow

- \bar{w} [⊥] $\mathfrak{B}\bar{w}$ \leq min_{*i*} b_{ii} : the left tail of the sum is, in general, thinner, than the tails of the elements.
- For a Gaussian random variable *Y* ∼ *N*(*m*, σ²),

$$
\mathbb{P}[e^Y \le x] \sim \frac{\sigma}{\sqrt{2\pi}} \left(\log \frac{1}{x} \right)^{-1} \exp \left\{ -\frac{(\log x - m)^2}{2\sigma^2} \right\}
$$

• The tail of a sum of log-normals may be approximated by a single log-normal variable with

$$
m = \bar{w}^{\perp}\mu - \mathcal{E}(\bar{w})
$$
 and $\sigma^2 = \bar{w}^{\perp}\mathfrak{B}\bar{w}$,

only up to a logarithmic factor.

• The density *p*(*x*) of *X* satisfies

$$
p(x) = -\frac{\log x}{x\overline{w}^{\perp}\mathfrak{B}\overline{w}} \mathbb{P}[X \leq x] \left(1 + O\left(\left(\log \frac{1}{x}\right)^{-1}\right)\right).
$$

ミドマミド

 QQQ

Example

Let $n = 2$, and $b_{11} = \sigma_1^2$, $b_{22} = \sigma_2^2$ and $b_{12} = \rho \sigma_1 \sigma_2$; assume $\sigma_1 \ge \sigma_2$. Then,

$$
\bar{w}=(\bar{v},1-\bar{v})^{\perp} \quad \text{with} \quad \bar{v}=\frac{\sigma_2(\sigma_2-\rho\sigma_1)}{\sigma_1^2+\sigma_2^2-2\rho\sigma_1\sigma_2} \vee 0.
$$

• If $\rho < \frac{\sigma_2}{\sigma_1}$, both weights are strictly positive, assumption (A) holds, and

$$
p(z) \sim \frac{C}{z\sqrt{|\log z|}} e^{-\frac{1}{2}(\mu_1+x^* - \log z, \mu_2 + y^* - \log z) \mathfrak{B}^{-1}(\mu_1+x^* - \log z, \mu_2 + y^* - \log z)^{\perp}}.
$$

• If $\rho > \frac{\sigma_2}{\sigma_1}$, $\bar{\mathbf{w}} = (0, 1)^{\perp}$, assumption (A) holds, and

$$
p(z)\sim \frac{1}{z\sigma_2\sqrt{2\pi}}e^{-\frac{(\log z-\mu_2)^2}{2\sigma_2^2}}.
$$

- \Rightarrow asymptotics determined by the second component.
- If $\rho = \frac{\sigma_2}{\sigma_1}$ $\rho = \frac{\sigma_2}{\sigma_1}$ $\rho = \frac{\sigma_2}{\sigma_1}$, $\bar{w} = (0, 1)^{\perp}$ but assumption (A) doe[s n](#page-22-0)[ot](#page-24-0) h[old](#page-23-0)[.](#page-24-0)

 QQQ

Outline

1 [Introduction](#page-2-0)

- **2** [Left tail of the sum](#page-10-0)
- ³ [Right tail of the difference](#page-22-0)
- **A** [Numerics and Monte Carlo](#page-28-0)
- **6** [Stress testing log-normal portfolios](#page-36-0)

E

 $2Q$

あきする

∢ ロ ▶ ィ 何 \sim ×.

A special case

We first consider the case when $m = 1$, that is, we are interested in the right tail of

$$
X^{(1)}=e^{Y_1}-\sum_{k=2}^n e^{Y_k}.
$$

Э×

◂**◻▸ ◂╓▸**

 $2Q$

Ξ

A special case

We first consider the case when $m = 1$, that is, we are interested in the right tail of

$$
X^{(1)}=e^{Y_1}-\sum_{k=2}^n e^{Y_k}.
$$

The results are similar to the case of the sum: let $\mathcal{E}(w) = -\sum_{i=1}^n w_i \log |w_i|,$

$$
\Delta_{1,n} := \{ w \in \mathbb{R}^n : w_1 \geq 0, w_i \leq 0, i = 2, \ldots, n, \text{and } \sum_{i=1}^n w_i = 1 \}
$$

and choose $\bar{w}\in \Delta_{1,n}$ as the minimizer of min $_{w\in \Delta_{1,n}}w^\perp \mathfrak{B} w.$ As before, we let $\overline{l} := \{i \in \{1, ..., n\} : \overline{w}_i \neq 0\}$ and $\overline{n} := \text{Card } \overline{l}$, and assume WLOG that $\bar{l} = \{1, \ldots, \bar{n}\}.$

 QQQ

イロト イ母 トイヨ トイヨ トーヨー

Asymptotics of *X* (1)

Let Assumption (A) hold true. Then, as $x \to +\infty$,

$$
\mathbb{P}[X^{(1)} \geq x] = \bar{C} (\log x)^{-\frac{1+\bar{n}}{2}} \exp \left\{-\frac{(\log x - \bar{w}^{\perp}\bar{\mu} - \mathcal{E}(\bar{w}))^2}{2\bar{w}^{\perp}\mathfrak{B}\bar{w}}\right\} \left(1 + O\left(\frac{1}{|\log x|}\right)\right)
$$

where

$$
\begin{aligned} \bar{C} &= \frac{1}{\sqrt{2\pi}\sqrt{\left|\bar{\mathfrak B}\right|}}\frac{\sqrt{\bar w^\perp\mathfrak B\bar w}}{\sqrt{\left|\bar{\mathfrak A}_1\cdots\bar{\mathfrak A}_{\bar n}\right|}} \\ & \exp\left\{-\frac{1}{2}\sum_{i,j=1}^{\bar n}\bar a_{ij}\left(\bar\mu_i-\log\left|\bar w_i\right|\right)\left(\bar\mu_j-\log\left|\bar w_j\right|\right)+\frac{\left(\bar w^\perp\bar\mu+\mathcal E(\bar w)\right)^2}{2\bar w^\perp\mathfrak B\bar w}\right\}.\end{aligned}
$$

画

メロトメ 倒 トメ ミトメ ミト

 299

Comments

The exponent $\bar{w}^{\perp} \mathfrak{B} \bar{w}$ is either equal to b_{11} or less than b_{11}

- When $\bar{w}^{\perp} \mathfrak{B} \bar{w} = b_{11}$, the asymptotics is determined exclusively by Y_1
- When $\bar{w}^{\perp} \mathfrak{B} \bar{w} < b_{11}$, the asymptotics is determined by Y_1 and a subset of (Y_2, \ldots, Y_n) .

This happens typically when Y_1 is strongly positively correlated with the other components

 QQ

イロト イ母 トイヨ トイヨ トーヨー

Comments

The exponent $\bar{w}^{\perp} \mathfrak{B} \bar{w}$ is either equal to b_{11} or less than b_{11}

- When $\bar{w}^{\perp} \mathfrak{B} \bar{w} = b_{11}$, the asymptotics is determined exclusively by Y_1
- When $\bar{w}^{\perp} \mathfrak{B} \bar{w} < b_{11}$, the asymptotics is determined by Y_1 and a subset of (Y_2, \ldots, Y_n) .

This happens typically when Y_1 is strongly positively correlated with the other components

We call

$$
v_{1,n}:=\bar{w}^\perp \mathfrak{B} \bar{w}=\min_{w\in \Delta_{1,n}} w^\perp \mathfrak{B} w
$$

the relative asymptotic variance of Y_1 with respect to Y_2, \ldots, Y_n .

 QQ

イロト イ母 トイヨ トイヨ トーヨー

Asymptotics for *X* (*m*)

Assume that for every $p = 1, \ldots, m$, the covariance matrix of $Y_p, Y_{m+1}, \ldots, Y_p$ satisfies Assumption (A). Then, by the previous result,

$$
\mathbb{P}[e^{Y_p}-e^{Y_{m+1}}-\cdots-e^{Y_n}\geq x]
$$

= $\delta_{1,p}(\log x)^{\delta_{2,p}}x^{\delta_{3,p}}\exp\left\{-\frac{\log^2 x}{v_p}\right\}(1+O((\log x)^{-1})), p=1,\ldots,m.$

Introduce the following parameters:

$$
\mathbf{v} = \max_{1 \le p \le m} \mathbf{v}_p, \quad \mathcal{P}_4 = \{p : 1 \le p \le m, \mathbf{v}_p = \mathbf{v}\},
$$

\n
$$
\delta_3 = \max_{p \in \mathcal{P}_4} \delta_{3,p}, \quad \mathcal{P}_3 = \{p \in \mathcal{P}_4 : \delta_{3,p} = \delta_3\},
$$

\n
$$
\delta_2 = \max_{p \in \mathcal{P}_3} \delta_{2,p}, \quad \mathcal{P}_2 = \{p \in \mathcal{P}_3 : \delta_{2,p} = \delta_2\}.
$$

 QQ

イロメ イ母メ イヨメ イヨメ

Asymptotics for *X* (*m*)

Assume that for every $p = 1, \ldots, m$, the covariance matrix of $Y_p, Y_{m+1}, \ldots, Y_n$ satisfies Assumption (A). Then the distribution function of *X* (*m*) satisfies:

$$
\mathbb{P}[X^{(m)} \geq x] = \sum_{p \in \mathcal{P}_2} \delta_{1,p} (\log x)^{\delta_2} x^{\delta_3} \exp \left\{-\frac{1}{2} \delta_4 \log^2 x\right\} (1 + O\left((\log x)^{-\frac{1}{2}}\right))
$$

as $x \to \infty$.

• The tail behavior of $X^{(m)}$ is determined by the components of (Y_1, \ldots, Y_m) which have the largest relative asymptotic variance with respect to (Y_{m+1}, \ldots, Y_n) .

 η an

イロト イ母 トイヨ トイヨ トーヨー

Asymptotics for *X* (*m*)

Assume that for every $p = 1, \ldots, m$, the covariance matrix of $Y_p, Y_{m+1}, \ldots, Y_n$ satisfies Assumption (A). Then the distribution function of *X* (*m*) satisfies:

$$
\mathbb{P}[X^{(m)} \geq x] = \sum_{p \in \mathcal{P}_2} \delta_{1,p} (\log x)^{\delta_2} x^{\delta_3} \exp \left\{-\frac{1}{2} \delta_4 \log^2 x\right\} (1 + O\left((\log x)^{-\frac{1}{2}}\right))
$$

as $x \to \infty$.

- The tail behavior of $X^{(m)}$ is determined by the components of (Y_1, \ldots, Y_m) which have the largest relative asymptotic variance with respect to (*Ym*+1, . . . , *Yn*).
- It is an extension of Theorem 1 of Asmussen Rojas (2008), which shows that the asymptotic behavior of the right tail of $e^{Y_1} + \cdots + e^{Y_n}$ is determined by the components of (Y_1, \ldots, Y_n) which have the largest variance.

 QQ

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B} \opl$

Outline

1 [Introduction](#page-2-0)

- **2** [Left tail of the sum](#page-10-0)
- **3** [Right tail of the difference](#page-22-0)
- **4** [Numerics and Monte Carlo](#page-28-0)

6 [Stress testing log-normal portfolios](#page-36-0)

E

 QQ

化重新分量

◂**◻▸ ◂╓▸**

Using the asymptotic formulas directly

- A 4 \times 4 covariance matrix with elements of the form $b_{ii} = \sigma_i \sigma_i \rho$ (constant correlation) with $\sigma = \{2, 2, 3, 3, 3\}.$
- The asymptotic approximations $F_a(x)$ and $F_a^{(2)}(x)$ of the distribution functions

$$
\mathbb{P}[X \leq x] = \mathbb{P}[e^{Y_1} + e^{Y_2} + e^{Y_3} + e^{Y_4} \leq x]
$$

and

$$
\mathbb{P}[X^{(2)} \geq x] = \mathbb{P}[e^{Y_1} + e^{Y_2} - e^{Y_3} - e^{Y_4} \geq x]
$$

are compared with their Monte Carlo estimates $F_{mc}(x)$ and $F_{mc}^{(2)}(x)$.

• We plot the ratios $\frac{F_{mc}(x)}{F_a(x)}$ and $\frac{F_{mc}^{(2)}(x)}{F_a^{(2)}(x)}$ $\frac{F_{m c}(X)}{F_a^{(2)}(x)}$ for a wide range of values of *x* and two values of the correlation ρ .

 QQQ

イロト イ母 トイヨ トイヨ トーヨー

Using the asymptotic formulas directly

Left: $\frac{F_{mc}(x)}{F_a(x)}$. Right: $\frac{F_{mc}^{(2)}(x)}{F_2^{(2)}(x)}$ $\frac{F_{mc}(\mathbf{x})}{F_a^{(2)}(\mathbf{x})}$. As expected, the ratios converge to one, but very slowly. On the other hand, the asymptotic formula gives the right order of magnitude for a wide range of probabilities (the values shown in the graph correspond to probabilities from 10⁻¹ to 10⁻¹⁰⁰).

つのい

• The standard estimate of the distribution function $F(x) = \mathbb{P}[X \leq x]$ is

$$
\widehat{F}_N(x) = \frac{1}{N} \sum_{k=1}^N \mathbf{1}_{\sum_{i=1}^n e^{Y_i^{(k)}} \leq x},
$$

where $Y^{(1)}, \ldots, Y^{(N)}$ are i.i.d. vectors with law $N(\mu, \mathfrak{B}).$

 Ω

イロメ イ母メ イヨメ イヨメ

• The standard estimate of the distribution function $F(x) = \mathbb{P}[X \leq x]$ is

$$
\widehat{F}_N(x) = \frac{1}{N} \sum_{k=1}^N \mathbf{1}_{\sum_{i=1}^n e^{Y_i^{(k)}} \leq x},
$$

where $Y^{(1)}, \ldots, Y^{(N)}$ are i.i.d. vectors with law $N(\mu, \mathfrak{B}).$

• The variance of $F_N(x)$ is given by

$$
\text{Var } \widehat{F}_N(x) = \frac{F(x) - F^2(x)}{N} \sim \frac{F(x)}{N}, \quad x \to 0,
$$

and the relative error

$$
\frac{\sqrt{\text{Var}\,\widehat{F}_N(x)}}{F(x)} \sim \frac{1}{\sqrt{\text{NF}(x)}}
$$

explodesvery qui[c](#page-35-0)kly a[s](#page-35-0) $x \to 0$ $x \to 0$ $x \to 0$ (as $e^{c \log^2 x}$ for [so](#page-36-0)[me](#page-38-0) co[n](#page-39-0)s[ta](#page-36-0)[nt](#page-48-0) *c*[\).](#page-48-0)

 Ω

Rewrite the formula for *F* as follows:

$$
F(x)=\mathbb{E}[e^{-\Lambda^{\perp}\mathfrak{B}^{-1}(Y-\mu)-\frac{1}{2}\Lambda^{\perp}\mathfrak{B}^{-1}\Lambda}\mathbf{1}_{\sum_{i=1}^{n}e^{Y_{i}+\Lambda_{i}}\leq x}],
$$

where $\Lambda \in \mathbb{R}^n$ is a vector to be chosen such that the corresponding estimate

$$
\widehat{F}_{N}^{\Lambda}(x) = \frac{1}{N} \sum_{k=1}^{N} e^{-\Lambda^{\perp} \mathfrak{B}^{-1} (Y^{(k)} - \mu) - \frac{1}{2} \Lambda^{\perp} \mathfrak{B}^{-1} \Lambda} \mathbf{1}_{\sum_{i=1}^{n} e^{Y_{i}^{(k)} + \Lambda_{i}} \leq x}
$$

has variance smaller than the standard estimate.

4 D.K.

 QQQ

Rewrite the formula for *F* as follows:

$$
F(x)=\mathbb{E}[e^{-\Lambda^{\perp}\mathfrak{B}^{-1}(Y-\mu)-\frac{1}{2}\Lambda^{\perp}\mathfrak{B}^{-1}\Lambda}\mathbf{1}_{\sum_{i=1}^{n}e^{Y_{i}+\Lambda_{i}}\leq x}],
$$

where $\Lambda \in \mathbb{R}^n$ is a vector to be chosen such that the corresponding estimate

$$
\widehat{F}_{N}^{\Lambda}(x) = \frac{1}{N} \sum_{k=1}^{N} e^{-\Lambda^{\perp} \mathfrak{B}^{-1} (Y^{(k)} - \mu) - \frac{1}{2} \Lambda^{\perp} \mathfrak{B}^{-1} \Lambda} \mathbf{1}_{\sum_{i=1}^{n} e^{Y_{i}^{(k)} + \Lambda_{i}} \leq x}
$$

has variance smaller than the standard estimate.

The variance of $\overline{F}_N^{\Lambda}(\overline{x})$ is given by

$$
\text{Var}\,\widehat{F}_N^{\Lambda}(x)=\frac{1}{N}\left\{e^{\Lambda^{\perp}\mathfrak{B}^{-1}\Lambda}\mathbb{P}\left[\sum_{i=1}^n e^{Y_i-\Lambda_i}\leq x\right]-F^2(x)\right\}.
$$

 \Rightarrow for optimal variance reduction, we need to minimize

$$
V(\Lambda, x) = e^{\Lambda^{\perp} \mathfrak{B}^{-1} \Lambda} \mathbb{P} \left[\sum_{i=1}^{n} e^{Y_i - \Lambda_i} \leq x \right]
$$

 Ω

.

To obtain an explicit estimate, replace the probability by its asymptotic equivalent. This amounts to minimizing

$$
\widetilde{V}(\Lambda, x) = \Lambda^{\perp} \mathfrak{B}^{-1} \Lambda - \frac{1}{2} \sum_{i,j=1}^{\bar{n}} \bar{a}_{ij} (\log(x \bar{w}_i) - \bar{\mu}_i + \Lambda_i) (\log(x \bar{w}_j) - \bar{\mu}_j + \Lambda_j).
$$

The optimal value of Λ is given by

$$
\Lambda^*_k = \sum_{i,j=1}^{\bar{n}} b_{ki} \bar{a}_{ij} (\log (x \bar{w}_j) - \bar{\mu}_j),
$$

TELES

4 0 8

To obtain an explicit estimate, replace the probability by its asymptotic equivalent. This amounts to minimizing

$$
\widetilde{V}(\Lambda, x) = \Lambda^{\perp} \mathfrak{B}^{-1} \Lambda - \frac{1}{2} \sum_{i,j=1}^{\bar{n}} \bar{a}_{ij} (\log(x \bar{w}_i) - \bar{\mu}_i + \Lambda_i) (\log(x \bar{w}_j) - \bar{\mu}_j + \Lambda_j).
$$

The optimal value of Λ is given by

$$
\Lambda_k^* = \sum_{i,j=1}^{\bar{n}} b_{ki} \bar{a}_{ij} (\log(x \bar{w}_j) - \bar{\mu}_j),
$$

and it can be shown that

$$
V(\Lambda^*,x)\lesssim CF^2(x)\left(\log\frac{1}{x}\right)^{\bar{n}}
$$

 \Rightarrow relative error grows only logarithmically in *x* as $x \rightarrow 0$ $x \rightarrow 0$ [.](#page-40-0)

Standard deviation reduction factors obtained with the variance reduction estimate (10⁶ trajectories).

Relative error of the variance reduction estimate.

4 0 8 \mathcal{A} QQ

Ξ

Outline

- **1** [Introduction](#page-2-0)
- **2** [Left tail of the sum](#page-10-0)
- **3** [Right tail of the difference](#page-22-0)
- **A** [Numerics and Monte Carlo](#page-28-0)
- **6** [Stress testing log-normal portfolios](#page-36-0)

◂**◻▸ ◂╓▸**

14.1

E

Multidimensional Black-Scholes model

In the rest of the talk we assume that the assets S^1, \ldots, S^n follow a *n*-dimensional Black-Scholes model:

$$
\log S_t = \log S_0 + bt - \frac{\text{diag}(\mathfrak{B})t}{2} + \mathfrak{B}^{\frac{1}{2}} W_t,
$$

where *W* is a standard *n*-dimensional Brownian motion, \mathfrak{B} is a covariance matrix, $b \in \mathbb{R}$ denotes the drift vector and diag(\mathfrak{B}) is the main diagonal of \mathfrak{B} .

 QQQ

イロト イ母 トイラト イラト

Multidimensional Black-Scholes model

In the rest of the talk we assume that the assets S^1, \ldots, S^n follow a *n*-dimensional Black-Scholes model:

$$
\log S_t = \log S_0 + bt - \frac{\text{diag}(\mathfrak{B})t}{2} + \mathfrak{B}^{\frac{1}{2}} W_t,
$$

where *W* is a standard *n*-dimensional Brownian motion, \mathfrak{B} is a covariance matrix, $b \in \mathbb{R}$ denotes the drift vector and diag(\mathfrak{B}) is the main diagonal of \mathfrak{B} . Let

$$
X_t = \sum_{i=1}^n \xi_i S_t^i.
$$

where ξ_1, \ldots, ξ_n are positive weights, represent a market index.

 QQQ

イロメ イ母メ イヨメ イヨメ

Stress testing

Assume that the fund manager holds a portfolio of assets *S* 1 , . . . , *S ⁿ* with weights v_1, \ldots, v_n , whose value will be denoted by

$$
V_t = \sum_{i=1}^n v_i S_t^i.
$$

In risk management, it is important to understand the behavior of the portfolio under adverse scenarios of market evolution.

 QQ

イロメ イ母メ イヨメ イヨメ

Stress testing

Assume that the fund manager holds a portfolio of assets *S* 1 , . . . , *S ⁿ* with weights v_1, \ldots, v_n , whose value will be denoted by

$$
V_t = \sum_{i=1}^n v_i S_t^i.
$$

In risk management, it is important to understand the behavior of the portfolio under adverse scenarios of market evolution.

Assuming that the scenario corresponds to the fall of $1 - \alpha$ per cent in the index, we are interested in computing "the most likely" evolution of our portfolio which can be defined as the conditional expected value given the scenario:

$$
\mathbb{E}[V_t|X_t=\alpha X_0]=\sum_{i=1}^n v_i e_i(t,\alpha X_0), \quad e_i(t,X)=\mathbb{E}[S_t^i|\sum_{k=1}^n \xi_k S_t^k=X].
$$

 QQ

イロト イ母 トイヨ トイヨ トーヨー

Stress testing: main result

Let Assumption (A) hold true. Then, as $X \to 0$,

$$
e_i(t, X) = X^{1+\bar{\lambda}_i} S_0^i \exp\left(b_i t - \sum_{p,q=1}^{\bar{n}} b_{pi} \bar{a}_{pq} \left(\log \frac{\bar{A}_1 + \dots + \bar{A}_{\bar{n}}}{\bar{A}_q} + \mu_q\right)\right) \times \exp\left(-\frac{t}{2} \sum_{p,q=1}^{\bar{n}} \bar{a}_{pq} b_{pi} b_{qi}\right) \left(1 + O\left(\left(\log \frac{1}{X}\right)^{-1}\right)\right)
$$

for $i \notin \overline{I}$ and

$$
e_i(t,X)=\frac{\bar{w}_iX}{\xi_i}\left(1+O\left(\left(\log\frac{1}{X}\right)^{-1}\right)\right),\,
$$

for $i \in \overline{I}$, where we write

$$
\mu_q = \log S_q^q + \log \xi_q + b_q t - \frac{t}{2} b_{qq} \quad \text{and} \quad \bar{\lambda}_i = \frac{[\mathfrak{B}\bar{w}]_i}{\bar{w}^\perp \mathfrak{B} \bar{w}} - 1 \begin{cases} = 0, & i \in \bar{I} \\ > 0, & i \notin \bar{I} \end{cases}
$$

Stress testing: remarks

The assets in the index can be classified in two categories depending on their behavior under the conditional law.

- The "safe assets" which decay proportionally to the index. These are exactly the assets which enter the Markowitz minimal variance portfolio with strictly positive weights.
- The "dangerous assets" which decay faster than the index.

化重新化重新

Concluding remarks

- Fully explicit tail approximations for arbitrary linear combinations of log-normal random variables.
- Powerful variance reduction techniques for Monte Carlo estimation of tail events.
- Insights for financial mathematics / risk management / construction of stress scenarios.

References

- S. Asmussen and L. Rojas-Nandayapa, "Asymptotics of sums of lognormal random variables with Gaussian copula," Statistics & Probability Letters, vol. 78, no. 16, pp. 2709–2714, 2008.
- X. Gao, H. Xu and D. Ye, "Asymptotic Behavior of Tail Density for Sum of Correlated Lognormal Variables", International Journal of Mathematics and Mathematical Sciences, vol. 2009.
- J. Geluk and Q. Tang, "Asymptotic tail probabilities of sums of dependent subexponential random variables", Journal of Theoretical Probability, vol. 22, no. 4, pp. 871-882, 2009.
- M. Avellaneda, D. Boyer-Olson, J. Busca and P. Friz, "Reconstructing volatility", Risk, October 2002.
- E. Gobet and M. Miri, "Weak approximation of averaged diffusion processes", Stoch. proc. appl., to appear. イロメ イ母メ イヨメ イヨメ

 \Rightarrow

An easy upper bound

Let
$$
\Delta_n := \{ w \in \mathbb{R}^n : w_i \ge 0, i = 1, ..., n, \text{and } \sum_{i=1}^n w_i = 1 \} \}
$$

and
$$
\mathcal{E}(w) = -\sum_{i=1}^{n} w_i \log w_i
$$
, for $w \in \Delta_n$ with $0 \log 0 = 0$.

Since
$$
\sum_{i=1}^n e^{Y_i} = \sum_{i=1}^n w_i e^{Y_i - \log w_i} \ge \exp\left(\sum_{i=1}^n w_i Y_i + \mathcal{E}(w)\right), w \in \Delta_n,
$$

we conclude that

$$
\mathbb{P}[X \leq x] \leq \mathbb{P}\left[\sum_{i=1}^n w_i Y_i + \mathcal{E}(w) \leq \log x\right] = N\left(\frac{\log x - \mu^{\perp} w - \mathcal{E}(w)}{\sqrt{w^{\perp} \mathfrak{B} w}}\right).
$$

A reasonable bound in the tail regime is obtained by taking $w = \arg \min_{w \in \Delta} w^{\perp} \mathfrak{B} w.$

 \Rightarrow Markowitz minimum variance portfolio!

 QQ

 \rightarrow \Rightarrow \rightarrow \Rightarrow \rightarrow

Corollary: conditional law

Let Assumption (A) hold true. Then, as $x \to 0$, for any $u \in \mathbb{R}^n$,

$$
\mathbb{E}[e^{\sum_{i=1}^{n} u_i(Y_i - \log x (1 + \bar{\lambda}_i))}|X \leq x]
$$
\n
$$
= \exp\left(\sum_{i=1}^{n} u_i \left\{\mu_i - \sum_{p,q=1}^{\bar{n}} b_{pi} \bar{a}_{pq} \left(\log \frac{\bar{A}_1 + \dots + \bar{A}_{\bar{n}}}{\bar{A}_q} + \bar{\mu}_q\right)\right\}\right)
$$
\n
$$
\times \exp\left(\frac{1}{2} \sum_{i,j \notin \bar{i}} u_i u_j \left\{b_{ij} - \sum_{p,q=1}^{\bar{n}} \bar{a}_{pq} b_{pi} b_{qj}\right\}\right) \left(1 + O\left(\frac{1}{|\log x|}\right)\right)
$$
\nwhere $\bar{\lambda}_i = \frac{[\Re \bar{w}]_i}{\bar{w}^{\perp} \bar{\Re} \bar{w}} - 1 \left\{\n\begin{aligned}\n&= 0, \quad i \in \bar{I} \\
&&> 0, \quad i \notin \bar{I}\n\end{aligned}\n\right.$

Same asymptotic behavior is obtained by conditioning on $\{X = x\}$

 QQ

イロメ イ母メ イヨメ イヨメ

The conditional distribution of the vector

$$
Y-(1+\bar\lambda)\log x
$$

given *X* ≤ *x* converges weakly to the (degenerate) Gaussian law with mean

$$
\mu'_{i} = \mu_{i} - \sum_{p,q=1}^{\bar{n}} b_{pi} \bar{a}_{pq} \left(\log \frac{\bar{A}_{1} + \dots + \bar{A}_{\bar{n}}}{\bar{A}_{q}} + \bar{\mu}_{q} \right)
$$

and covariance matrix

$$
\mathfrak{B}'_{ij} = \left\{b_{ij} - \sum_{\rho,q=1}^{\bar{n}} \bar{a}_{pq} b_{pi} b_{qj}\right\} \mathbf{1}_{i,j \notin \bar{I}}.
$$

Note that for $i \in \overline{I}$ $i \in \overline{I}$ $i \in \overline{I}$, the expression for μ'_i simplifies to $\mu'_i = \log \frac{\bar{A}_i}{\bar{A}_1 + \cdots + \bar{A}_{\bar{n}}} = \log \bar{w}_i$ $\mu'_i = \log \frac{\bar{A}_i}{\bar{A}_1 + \cdots + \bar{A}_{\bar{n}}} = \log \bar{w}_i$ $\mu'_i = \log \frac{\bar{A}_i}{\bar{A}_1 + \cdots + \bar{A}_{\bar{n}}} = \log \bar{w}_i$.

◂**◻▸ ◂╓▸**

 Ω

Corollary: density

Let Assumption (A) hold true. Then, as $x \to 0$, the density $p(x)$ of X satisfies

$$
p(x) = -\frac{\log x}{x\overline{w} \perp \mathfrak{B} \overline{w}} \mathbb{P}[X \leq x] \left(1 + O\left(\left(\log \frac{1}{x}\right)^{-1}\right)\right).
$$

 $2Q$

Ξ

 \rightarrow \Rightarrow \rightarrow \Rightarrow \rightarrow

K ロ ト K 何 ト