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Introduction

Introduction

Consider the random variable Xβ given by

Xβ =
n∑

k=1

βk eYk

where β1, . . . , βn are nonzero constants and

Y = (Y1, · · · ,Yn) is a n-dimensional Gaussian random variable with the mean

µ = (µ1, · · · , µn) and the covariance matrix B with detB 6= 0, whose

elements are denoted by bij

• Sums / differences of correlated log-normal random variables appear in

financial mathematics, insurance, and many other domains such as, for

example, signal processing.

• In finance: models for portfolios and market indices.

• In insurance: aggregate loss from a large number of claims.
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Introduction

Our aims

Characterize the tail behavior of the

distribution function P[Xβ ≤ x ] and

the density pβ(x) of Xβ

Approximate rare-event probabili-

ties and risk measures in the mul-

tidimensional Black-Scholes model

Understand the conditional law of

Y1, . . . ,Yn given Xβ ≤ x (Xβ ≥ x)

Design efficient Monte Carlo al-

gorithms for precise evaluation of

these quantities

Describe the behavior of stocks un-

der stress scenarios for the index
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Introduction

What is to be done

Without loss of generality, it is sufficient to study:

X (m) =
m∑

k=1

eYk −
n∑

k=m+1

eYk , m ≥ 1.

The support of X (m) is

(−∞,∞) if 1 ≤ m ≤ n − 1

(0,∞) if m = n

(−∞,0) if m = 0.

⇒ we need to study

the Left tail (when x → 0) of the sum X =
∑n

k=1 eYk and

the Right tail (when x → +∞) of X (m) for m ≥ 1.
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Introduction

Related work: right tail of the sum

• Important in insurance

• For X ≥ x it is enough that at least one of Yi satisfies eYi ≥ x .

• Asmussen and Rojas-Nandayapa (2008): the asymptotics is

correlation-independent and satisfies

P[X > x ] ∼ mFµ,σ2 , σ = max
k=1,...,n

σk , µ = max
k :σk =σ

µk .

where F is the one-dimensional log-normal survival function and

m = #{k : σk = σ, µk = µ}.

• This result holds more generally for dependent subexponential random

variables (Geluk and Tang, 2009).
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Introduction

Related work: left tail of the sum

• Important in finance

• For X ≤ x it is necessary (not sufficient) that all Yi satisfy eYi ≤ x .

• Asymptotics may depend on correlation; only partial results are available

in the literature. Gao et al. (2009) treat the case n = 2 and the case of

arbitrary n under restrictive assumptions on B.
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Left tail of the sum

Notation and preliminaries

Let ∆n := {w ∈ Rn : wi ≥ 0, i = 1, . . . ,n,and
n∑

i=1

wi = 1}}

and E(w) = −
n∑

i=1

wi log wi , for w ∈ ∆n with 0 log 0 = 0.

We choose w̄ ∈ ∆n to be the unique point such that

w̄⊥Bw̄ = min
w∈∆n

w⊥Bw .

⇒ Markowitz minimum variance portfolio

With Ī := {i ∈ {1, . . . ,n} : w̄i > 0} and n̄ := Card Ī, assume WLOG that

Ī = {1, . . . , n̄}.

We let µ̄ ∈ Rn̄ with µ̄i = µi and B̄ ∈ Mn̄(R) with b̄ij = bij ; the elements of B̄−1

are denoted by āij and Āk :=
∑n̄

j=1 ākj .
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∑n̄

j=1 ākj .
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Left tail of the sum

Assumption (A)

Our main result requires the following non-degeneracy assumption:

(A) For i = n̄ + 1, . . . ,n,

(ei − w̄)⊥Bw̄ 6= 0,

where ei ∈ Rn satisfies ei
j = 1 if i = j and ei

j = 0 otherwise.

Observe that

grad
1
2

w⊥Bw = Bw .
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Left tail of the sum

Main result for X

Let Assumption (A) hold true. Then, as x → 0,

P[X ≤ x ] = C̄
(

log
1
x

)− 1+n̄
2

exp
{
− (log x − w̄⊥µ̄− E(w̄))2

2w̄⊥Bw̄

}(
1 + O

(
1

| log x |

))
,

where

C̄ =
1

√
2π
√∣∣B̄∣∣

√
w̄⊥Bw̄√
Ā1 · · · Ān̄

× exp

−1
2

n̄∑
i,j=1

āij (µ̄i − log w̄i ) (µ̄j − log w̄j ) +
(w̄⊥µ̄+ E(w̄))2

2w̄⊥Bw̄

 .

Gao et al. (2009) obtain this result under the assumption that w̄i > 0 for

i = 1, . . . ,n by applying multidimensional Laplace method.
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Left tail of the sum

Remarks

• w̄⊥Bw̄ ≤ mini bii : the left tail of the sum is, in general, thinner, than the

tails of the elements.

• For a Gaussian random variable Y ∼ N(m, σ2),

P[eY ≤ x ] ∼ σ√
2π

(
log

1
x

)−1

exp
{
− (log x −m)2

2σ2

}
• The tail of a sum of log-normals may be approximated by a single

log-normal variable with

m = w̄⊥µ− E(w̄) and σ2 = w̄⊥Bw̄ ,

only up to a logarithmic factor.
• The density p(x) of X satisfies

p(x) = − log x
xw̄⊥Bw̄

P[X ≤ x ]

(
1 + O

((
log

1
x

)−1
))

.

Peter Tankov (Université Paris–Diderot) Asymptotics of log-normal random variables Angers, September 8–11, 2013 13 / 39



Left tail of the sum

Remarks

• w̄⊥Bw̄ ≤ mini bii : the left tail of the sum is, in general, thinner, than the

tails of the elements.
• For a Gaussian random variable Y ∼ N(m, σ2),

P[eY ≤ x ] ∼ σ√
2π

(
log

1
x

)−1

exp
{
− (log x −m)2

2σ2

}
• The tail of a sum of log-normals may be approximated by a single

log-normal variable with

m = w̄⊥µ− E(w̄) and σ2 = w̄⊥Bw̄ ,

only up to a logarithmic factor.

• The density p(x) of X satisfies

p(x) = − log x
xw̄⊥Bw̄

P[X ≤ x ]

(
1 + O

((
log

1
x

)−1
))

.

Peter Tankov (Université Paris–Diderot) Asymptotics of log-normal random variables Angers, September 8–11, 2013 13 / 39



Left tail of the sum

Remarks

• w̄⊥Bw̄ ≤ mini bii : the left tail of the sum is, in general, thinner, than the

tails of the elements.
• For a Gaussian random variable Y ∼ N(m, σ2),

P[eY ≤ x ] ∼ σ√
2π

(
log

1
x

)−1

exp
{
− (log x −m)2

2σ2

}
• The tail of a sum of log-normals may be approximated by a single

log-normal variable with

m = w̄⊥µ− E(w̄) and σ2 = w̄⊥Bw̄ ,

only up to a logarithmic factor.
• The density p(x) of X satisfies

p(x) = − log x
xw̄⊥Bw̄

P[X ≤ x ]

(
1 + O

((
log

1
x

)−1
))

.

Peter Tankov (Université Paris–Diderot) Asymptotics of log-normal random variables Angers, September 8–11, 2013 13 / 39



Left tail of the sum

Example

Let n = 2, and b11 = σ2
1 , b22 = σ2

2 and b12 = ρσ1σ2; assume σ1 ≥ σ2. Then,

w̄ = (v̄ ,1− v̄)⊥ with v̄ =
σ2(σ2 − ρσ1)

σ2
1 + σ2

2 − 2ρσ1σ2
∨ 0.

• If ρ < σ2
σ1

, both weights are strictly positive, assumption (A) holds, and

p(z) ∼ C
z
√
| log z|

e−
1
2 (µ1+x∗−log z,µ2+y∗−log z)B−1(µ1+x∗−log z,µ2+y∗−log z)⊥ .

• If ρ > σ2
σ1

, w̄ = (0,1)⊥, assumption (A) holds, and

p(z) ∼ 1
zσ2
√

2π
e
− (log z−µ2)2

2σ2
2 .

⇒ asymptotics determined by the second component.

• If ρ = σ2
σ1

, w̄ = (0,1)⊥ but assumption (A) does not hold.
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Right tail of the difference

A special case

We first consider the case when m = 1, that is, we are interested in the right

tail of

X (1) = eY1 −
n∑

k=2

eYk .

The results are similar to the case of the sum: let E(w) = −
∑n

i=1 wi log |wi |,

∆1,n := {w ∈ Rn : w1 ≥ 0,wi ≤ 0, i = 2, . . . ,n,and
n∑

i=1

wi = 1}

and choose w̄ ∈ ∆1,n as the minimizer of minw∈∆1,n w⊥Bw .

As before, we let Ī := {i ∈ {1, . . . ,n} : w̄i 6= 0} and n̄ := Card Ī, and assume

WLOG that Ī = {1, . . . , n̄}.

Peter Tankov (Université Paris–Diderot) Asymptotics of log-normal random variables Angers, September 8–11, 2013 16 / 39



Right tail of the difference

A special case

We first consider the case when m = 1, that is, we are interested in the right

tail of

X (1) = eY1 −
n∑

k=2

eYk .

The results are similar to the case of the sum: let E(w) = −
∑n

i=1 wi log |wi |,

∆1,n := {w ∈ Rn : w1 ≥ 0,wi ≤ 0, i = 2, . . . ,n,and
n∑

i=1

wi = 1}

and choose w̄ ∈ ∆1,n as the minimizer of minw∈∆1,n w⊥Bw .
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Right tail of the difference

Asymptotics of X (1)

Let Assumption (A) hold true. Then, as x → +∞,

P[X (1) ≥ x ] = C̄ (log x)−
1+n̄

2 exp
{
− (log x − w̄⊥µ̄− E(w̄))2

2w̄⊥Bw̄

}(
1 + O

(
1

| log x |

))
,

where

C̄ =
1

√
2π
√∣∣B̄∣∣

√
w̄⊥Bw̄√
|Ā1 · · · Ān̄|

exp

−1
2

n̄∑
i,j=1

āij (µ̄i − log |w̄i |) (µ̄j − log |w̄j |) +
(w̄⊥µ̄+ E(w̄))2

2w̄⊥Bw̄

 .
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Right tail of the difference

Comments

The exponent w̄⊥Bw̄ is either equal to b11 or less than b11

• When w̄⊥Bw̄ = b11, the asymptotics is determined exclusively by Y1

• When w̄⊥Bw̄ < b11, the asymptotics is determined by Y1 and a subset of

(Y2, . . . ,Yn).

This happens typically when Y1 is strongly positively correlated with the

other components

We call

v1,n := w̄⊥Bw̄ = min
w∈∆1,n

w⊥Bw

the relative asymptotic variance of Y1 with respect to Y2, . . . ,Yn.

Peter Tankov (Université Paris–Diderot) Asymptotics of log-normal random variables Angers, September 8–11, 2013 18 / 39



Right tail of the difference

Comments

The exponent w̄⊥Bw̄ is either equal to b11 or less than b11

• When w̄⊥Bw̄ = b11, the asymptotics is determined exclusively by Y1

• When w̄⊥Bw̄ < b11, the asymptotics is determined by Y1 and a subset of

(Y2, . . . ,Yn).

This happens typically when Y1 is strongly positively correlated with the

other components

We call

v1,n := w̄⊥Bw̄ = min
w∈∆1,n

w⊥Bw

the relative asymptotic variance of Y1 with respect to Y2, . . . ,Yn.

Peter Tankov (Université Paris–Diderot) Asymptotics of log-normal random variables Angers, September 8–11, 2013 18 / 39



Right tail of the difference

Asymptotics for X (m)

Assume that for every p = 1, . . . ,m, the covariance matrix of Yp,Ym+1, . . . ,Yn

satisfies Assumption (A). Then, by the previous result,

P[eYp − eYm+1 − · · · − eYn ≥ x ]

= δ1,p(log x)δ2,p xδ3,p exp

{
− log2 x

vp

}
(1 + O((log x)−1)), p = 1, . . . ,m.

Introduce the following parameters:

v = max
1≤p≤m

vp, P4 = {p : 1 ≤ p ≤ m, vp = v},

δ3 = max
p∈P4

δ3,p, P3 = {p ∈ P4 : δ3,p = δ3},

δ2 = max
p∈P3

δ2,p, P2 = {p ∈ P3 : δ2,p = δ2}.
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Right tail of the difference

Asymptotics for X (m)

Assume that for every p = 1, . . . ,m, the covariance matrix of Yp,Ym+1, . . . ,Yn

satisfies Assumption (A). Then the distribution function of X (m) satisfies:

P[X (m) ≥ x ] =
∑

p∈P2

δ1,p(log x)δ2xδ3 exp
{
−1

2
δ4 log2 x

}
(1 + O

(
(log x)−

1
2

)
as x →∞.

• The tail behavior of X (m) is determined by the components of

(Y1, . . . ,Ym) which have the largest relative asymptotic variance with

respect to (Ym+1, . . . ,Yn).

• It is an extension of Theorem 1 of Asmussen – Rojas (2008), which

shows that the asymptotic behavior of the right tail of eY1 + · · ·+ eYn is

determined by the components of (Y1, . . . ,Yn) which have the largest

variance.
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Numerics and Monte Carlo

Outline

1 Introduction

2 Left tail of the sum

3 Right tail of the difference

4 Numerics and Monte Carlo

5 Stress testing log-normal portfolios

Peter Tankov (Université Paris–Diderot) Asymptotics of log-normal random variables Angers, September 8–11, 2013 21 / 39



Numerics and Monte Carlo

Using the asymptotic formulas directly

• A 4× 4 covariance matrix with elements of the form bij = σiσjρ (constant

correlation) with σ = {2 2.3 3 3}.

• The asymptotic approximations Fa(x) and F (2)
a (x) of the distribution

functions

P[X ≤ x ] = P[eY1 + eY2 + eY3 + eY4 ≤ x ]

and

P[X (2) ≥ x ] = P[eY1 + eY2 − eY3 − eY4 ≥ x ]

are compared with their Monte Carlo estimates Fmc(x) and F (2)
mc (x).

• We plot the ratios Fmc(x)
Fa(x) and F (2)

mc (x)

F (2)
a (x)

for a wide range of values of x and two

values of the correlation ρ.
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Numerics and Monte Carlo

Using the asymptotic formulas directly

Left: Fmc(x)
Fa(x) . Right: F (2)

mc (x)

F (2)
a (x)

. As expected, the ratios converge to one, but very

slowly. On the other hand, the asymptotic formula gives the right order of

magnitude for a wide range of probabilities (the values shown in the graph

correspond to probabilities from 10−1 to 10−100).
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Numerics and Monte Carlo

Variance reduction of Monte Carlo estimates

• The standard estimate of the distribution function F (x) = P[X ≤ x ] is

F̂N(x) =
1
N

N∑
k=1

1∑n
i=1 eY (k)

i ≤x
,

where Y (1), . . . ,Y (N) are i.i.d. vectors with law N(µ,B).

• The variance of F̂N(x) is given by

Var F̂N(x) =
F (x)− F 2(x)

N
∼ F (x)

N
, x → 0,

and the relative error √
Var F̂N(x)

F (x)
∼ 1√

NF (x)

explodes very quickly as x → 0 (as ec log2 x for some constant c).
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Numerics and Monte Carlo

Variance reduction of Monte Carlo estimates

Rewrite the formula for F as follows:

F (x) = E[e−Λ⊥B−1(Y−µ)− 1
2 Λ⊥B−1Λ1∑n

i=1 eYi +Λi≤x ],

where Λ ∈ Rn is a vector to be chosen such that the corresponding estimate

F̂ Λ
N (x) =

1
N

N∑
k=1

e−Λ⊥B−1(Y (k)−µ)− 1
2 Λ⊥B−1Λ1∑n

i=1 eY (k)
i +Λi≤x

has variance smaller than the standard estimate.

The variance of F̂ Λ
N (x) is given by

Var F̂ Λ
N (x) =

1
N

{
eΛ⊥B−1ΛP

[
n∑

i=1

eYi−Λi ≤ x

]
− F 2(x)

}
.

⇒ for optimal variance reduction, we need to minimize

V (Λ, x) = eΛ⊥B−1ΛP

[
n∑

i=1

eYi−Λi ≤ x

]
.
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Numerics and Monte Carlo

Variance reduction of Monte Carlo estimates

To obtain an explicit estimate, replace the probability by its asymptotic

equivalent. This amounts to minimizing

Ṽ (Λ, x) = Λ⊥B−1Λ− 1
2

n̄∑
i,j=1

āij (log(xw̄i )− µ̄i + Λi ) (log(xw̄j )− µ̄j + Λj ) .

The optimal value of Λ is given by

Λ∗k =
n̄∑

i,j=1

bki āij (log(xw̄j )− µ̄j ) ,

and it can be shown that

V (Λ∗, x) . CF 2(x)

(
log

1
x

)n̄

⇒ relative error grows only logarithmically in x as x → 0.
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Numerics and Monte Carlo

Variance reduction of Monte Carlo estimates

ρ = 0.2 ρ = 0.8

x P[X ≤ x ] red. factor x P[X ≤ x ] red. factor

0.006738 0.0000027 152.8 0.0002035 0.0000012 269

0.01831 0.0000424 38.07 0.0009119 0.0000331 69.08

0.04979 0.0004639 14.48 0.004089 0.0005282 16.07

0.1353 0.003457 6.188 0.01832 0.005085 5.312

0.3679 0.01798 3.152 0.08209 0.02998 2.256

1. 0.06603 1.845 0.3679 0.1141 1.078

Standard deviation reduction factors obtained with the variance reduction

estimate (106 trajectories).
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Numerics and Monte Carlo

Variance reduction of Monte Carlo estimates

Relative error of the variance reduction estimate.
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Stress testing log-normal portfolios

Outline

1 Introduction

2 Left tail of the sum

3 Right tail of the difference

4 Numerics and Monte Carlo

5 Stress testing log-normal portfolios
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Stress testing log-normal portfolios

Multidimensional Black-Scholes model

In the rest of the talk we assume that the assets S1, . . . ,Sn follow a

n-dimensional Black-Scholes model:

log St = log S0 + bt − diag(B)t
2

+ B
1
2 Wt ,

where W is a standard n-dimensional Brownian motion, B is a covariance

matrix, b ∈ R denotes the drift vector and diag(B) is the main diagonal of B.

Let

Xt =
n∑

i=1

ξiSi
t .

where ξ1, . . . , ξn are positive weights, represent a market index.
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Stress testing log-normal portfolios

Stress testing

Assume that the fund manager holds a portfolio of assets S1, . . . ,Sn with

weights v1, . . . , vn, whose value will be denoted by

Vt =
n∑

i=1

viSi
t .

In risk management, it is important to understand the behavior of the portfolio

under adverse scenarios of market evolution.

Assuming that the scenario corresponds to the fall of 1− α per cent in the

index, we are interested in computing “the most likely” evolution of our portfolio

which can be defined as the conditional expected value given the scenario:

E[Vt |Xt = αX0] =
n∑

i=1

viei (t , αX0), ei (t ,X ) = E[Si
t |

n∑
k=1

ξk Sk
t = X ].
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Stress testing log-normal portfolios

Stress testing: main result

Let Assumption (A) hold true. Then, as X → 0,

ei (t ,X ) = X 1+λ̄i Si
0 exp

bi t −
n̄∑

p,q=1

bpi āpq

(
log

Ā1 + · · ·+ Ān̄

Āq
+ µq

)
× exp

− t
2

n̄∑
p,q=1

āpqbpibqi

(1 + O

((
log

1
X

)−1
))

for i /∈ Ī and

ei (t ,X ) =
w̄iX
ξi

(
1 + O

((
log

1
X

)−1
))

,

for i ∈ Ī, where we write

µq = log Sq
0 + log ξq + bq t − t

2
bqq and λ̄i =

[Bw̄ ]i
w̄⊥Bw̄

− 1

= 0, i ∈ Ī

> 0, i /∈ Ī

Peter Tankov (Université Paris–Diderot) Asymptotics of log-normal random variables Angers, September 8–11, 2013 32 / 39



Stress testing log-normal portfolios

Stress testing: remarks

The assets in the index can be classified in two categories depending on their

behavior under the conditional law.

• The “safe assets” which decay proportionally to the index. These are

exactly the assets which enter the Markowitz minimal variance portfolio

with strictly positive weights.

• The “dangerous assets” which decay faster than the index.
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Stress testing log-normal portfolios

Concluding remarks

• Fully explicit tail approximations for arbitrary linear combinations of

log-normal random variables.

• Powerful variance reduction techniques for Monte Carlo estimation of tail

events.

• Insights for financial mathematics / risk management / construction of

stress scenarios.
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Stress testing log-normal portfolios
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Stress testing log-normal portfolios

An easy upper bound

Let ∆n := {w ∈ Rn : wi ≥ 0, i = 1, . . . ,n,and
n∑

i=1

wi = 1}}

and E(w) = −
n∑

i=1

wi log wi , for w ∈ ∆n with 0 log 0 = 0.

Since
n∑

i=1

eYi =
n∑

i=1

wieYi−log wi ≥ exp

(
n∑

i=1

wiYi + E(w)

)
,w ∈ ∆n,

we conclude that

P[X ≤ x ] ≤ P

[
n∑

i=1

wiYi + E(w) ≤ log x

]
= N

(
log x − µ⊥w − E(w)√

w⊥Bw

)
.

A reasonable bound in the tail regime is obtained by taking

w = arg minw∈∆ w⊥Bw .

⇒ Markowitz minimum variance portfolio!
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Stress testing log-normal portfolios

Corollary: conditional law

Let Assumption (A) hold true. Then, as x → 0, for any u ∈ Rn,

E[e
∑n

i=1 ui (Yi−log x (1+λ̄i ))|X ≤ x ]

= exp

 n∑
i=1

ui

µi −
n̄∑

p,q=1

bpi āpq

(
log

Ā1 + · · ·+ Ān̄

Āq
+ µ̄q

)


× exp

1
2

∑
i,j /∈Ī

uiuj

bij −
n̄∑

p,q=1

āpqbpibqj


(1 + O

(
1

| log x |

))

where λ̄i = [Bw̄ ]i
w̄⊥Bw̄ − 1

= 0, i ∈ Ī

> 0, i /∈ Ī

Same asymptotic behavior is obtained by conditioning on {X = x}
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Stress testing log-normal portfolios

Remarks

The conditional distribution of the vector

Y − (1 + λ̄) log x

given X ≤ x converges weakly to the (degenerate) Gaussian law with mean

µ′i = µi −
n̄∑

p,q=1

bpi āpq

(
log

Ā1 + · · ·+ Ān̄

Āq
+ µ̄q

)

and covariance matrix

B′ij =

bij −
n̄∑

p,q=1

āpqbpibqj

1i,j /∈Ī .

Note that for i ∈ Ī, the expression for µ′i simplifies to µ′i = log Āi
Ā1+···+Ān̄

= log w̄i .

Peter Tankov (Université Paris–Diderot) Asymptotics of log-normal random variables Angers, September 8–11, 2013 38 / 39



Stress testing log-normal portfolios

Corollary: density

Let Assumption (A) hold true. Then, as x → 0, the density p(x) of X satisfies

p(x) = − log x
xw̄⊥Bw̄

P[X ≤ x ]

(
1 + O

((
log

1
x

)−1
))

.
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