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Regular random fluctuations of stock market prices are usually explained
by the effect of multiple exogenous factors subjected to accidental
variations.

But Brownian component in the evolution of prices on the stock
market may originate from asymmetric information of stockbrokers.
"Insiders" are not interested in immediate revelation of their private
information. This forces them to randomize their actions and results
in the appearance of the oscillatory component in price evolution.

De Meyer and Saley demonstrate this idea on a simplified model of
multistage bidding between two agents for single-type risky assets.
De Meyer B., Moussa Saley H. (2002) On the Strategic Origin of
Brownian Motion in Finance. Int. J. of Game Theory, 31, 285-319.
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The MODEL
TWO PLAYERS have MONEY + SHARES of one type risky asset.
RANDOM liquidation price of a share may take TWO values
1 with probability p and 0 with 1− p.

STEP 0: a chance move determines a liquidation price of one share
ONCE FOR ALL. Both players know probability p.
Player 1 (insider) is informed on the chosen price.
Player 2 is not.
Player 2 knows that Player 1 is an insider.

STEP t, t = 1,2, . . . , n: Players propose their prices for one share,
xt for Player 1, yt for Player 2.
The pair (xt, yt) is announced to both Players.

The player who posts the LARGER price buys one share from his
opponent for THIS price.

Players aim to maximize the values of their final portfolios, i.e. money
plus liquidation values of obtained shares.
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In this model Player 2 should use the history of Player 1’s moves to
update his beliefs about the liquidation price. Player 2 may re-evaluate
the posterior probabilities of chance move outcome. Player 1 controls
these posterior probabilities.

Thus Player 1 faces a problem of how best to use his private information
without revealing it to Player 2. Player 1 must maintain a balance
between taking advantage of his private information and concealing
it from Player 2.

De Meyer and Saley consider the model where players may make
arbitrary bids. They reduce this model to a zero-sum repeated game
with lack of information on one side Gn(p), as introduced by Aumann,
Maschler (1966), but with continual action sets.
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One-step payoffs of Player 1 for Gn(p) are given by

as(x, y) =


y − s, if x < y;

0, if x = y;

s− x, if x > y,

where s = 0 or s = 1 is the result of chance move.

The final payoff is
∑n

t=1 as(xt, yt).

The payoff function is

Kn(σ, τ, p) = Ep,σ,τ

n∑
t=1

as(xt, yt),

where σ and τ are strategies of players, i.e. sequences of randomized
actions at steps t, t = 1,2, . . . , n depending on information up to the
corresponding step. Besides, strategy of Player 1 depends on s

but strategy of Player 2 does not.
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De Meyer and Saley show that the games Gn(p) have values Vn(p),
(i.e. the guaranteed gains of Player 1 are equal to the guaranteed
losses of Player 2). They find these values

Vn(p)/
√

n =
∫ ∞

χp

sfn(s)ds,

where fn is the probability density of the random variable
Sn :=

∑n
q=1 Uq/

√
n, U1, . . . , Un are n independent random variables

uniformly distributed over [−1,1] and χp is such that p =
∫∞
χp

fn(s)ds.

As n → ∞, the TOTAL NON-AVERAGED values infinitely grow up
with rate

√
n.

De Meyer and Saley find the optimal strategies of players.

They show that Brownian Motion in fact appears in the asymptotics
of transaction prices generated by the optimal strategies.
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The discrete variant of the model with bids proportional
to the minimal currency unit.

The SAME informational structure.

1. The price of a share may take two integer values m and 0.

2. Any integer bids are admissible. The reasonable bids are 0, . . . , m−1.

The model is described by a zero-sum n-stage repeated game Gm
n (p)

given by the two m×m matrices of one-step payoffs of Player 1.

Thus players repeatedly play a matrix game. Player 1 knows what
game is played. Player 2 knows the probability p only.
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In contrast to the model with arbitrary bids, the sequence of values
V m

n (p) for games Gm
n (p) is bounded.

Proposition. The value V m
n (p) < Hm(p), where Hm(p) is the continuous

piecewise linear function over [0,1] with m domains of linearity
[k/m, (k + 1)/m]. For p = k/m

Hm(k/m) = k(m− k)/2 = D[p]/2.

The family τk, k = 0, . . . , m− 1 of strategies of Player 2 ensures this
upper bound. The first move τk

1 is the action k.
The moves τk

t for t > 1 depend on the last observed pair of actions:

τk
t (it−1, jt−1) =


jt−1 − 1, if it−1 < jt−1;

jt−1, if it−1 = jt−1;

jt−1 + 1, if it−1 > jt−1.

So we may define correctly games Gm
∞(p) with UNLIMITED BEFOREHAND

number of steps and with TOTAL NON-AVERAGED payoffs.
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Solutions for games Gm
∞(p): Domansky V. (2007) Repeated games

with asymmetric information and random price fluctuations at finance
markets. Int. J. Game Theory, 2007, 36(2), 241-257.

Theorem 1. a) V m
∞ (p) = Hm(p).

b) For p = k/m, the first move of the optimal Player 1’s strategy σk

makes use of two actions k − 1 and k. The actions occur with the
total probabilities q(k − 1) = q(k) = 1/2. The conditional posterior
probabilities of the state m are

p(m|k − 1) = (k − 1)/m, p(m|k) = (k + 1)/m.

As all posterior probabilities belong to the set p = l/m, l = 0, . . . m,
these first moves define the strategy σk for the games of arbitrary
duration.

c) For p ∈ [k/m, (k + 1)/m] the optimal strategy of Player 2 is τk.
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The optimal strategy of Player 1 generates a symmetric random walk
of share price posterior expectations with an absorption at the extreme
points 0 and m. The absorption means revealing of the true value of
share by Player 2.

For the initial probability k/m, the expected duration of this symmetric
random walk before absorption is k(m− k).

The best response of Player 2 to the optimal strategy of Player 1
provides him the fixed loss of 1/2 per step.

The value of the infinite game V m
∞ (k/m) = k(m− k)/2 is equal to the

expected number of steps before its termination multiplied by Player
1’s gain per step 1/2.
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Sandomirskaia M. (2013) On the Bidding with Asymmetric Information
and the Finite Number of Repeatition. Int. Conf. Game Theory and
Management GTM2013. Abstracts. 203-206.

Theorem 2. If Player 1 exploits the strategy σk in the game Gm
n (k/m),

then his guaranteed gain is
minτ Km

n (σk, τ, k/m) = (m−k)k
2 − εm

n (k), where

εm
n (k) =

1

2m

[m/2]∑
l=1

cosn π(2l − 1)

m
sin

πk(2l − 1)

m
·
cos π(2l−1)

2m

sin3 π(2l−1)
2m

,

with [α] being the integer part of α.
Corollary. εm

n (k) = O(cosn(π/m)), i.e. it decreases exponentially. As

V m
∞ (k/m) =

(m− k)k

2
> V m

n (k/m) > min
τ

Km
n (σk, τ, k/m) =

(m− k)k

2
−εm

n (k),

the strategy σk is a ε-optimal strategy of Player 1 for the game Gm
n (p),

where ε < εm
n (k).
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Bidding games with countable state and action spaces

Domansky V., Kreps V. (2009) Repeated games with asymmetric
information and random price fluctuations at finance markets: the
case of countable state space. Centre d’Economie de la Sorbonne.
Univ. Paris 1. Pantheon – Sorbonne. Preprint 2009.40. http://ces.univ-
paris1.fr/cesdp/CESFramDP2009.htm

We consider the same model, but RANDOM liquidation price of
a share may take any INTEGER value according to a probability
distribution p over Z1.
This n-stage model is described by a repeated game Gn(p) with
incomplete information of Player 2 with countable state and action
spaces S = I = J = Z1.

If the share price has a finite variance D[p], then the sequence Vn(p)

is bounded and we solve the game G∞(p) of unlimited duration.
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We construct the optimal strategies of Player 1 as combinations of
his optimal strategies for "elementary" games with two states.

To do this we use the symmetric representation of probability distributions
p ∈ Θ(r) = {p : E[p] = r} over the integer lattice Z1 with a fixed
integer mean value r as probability mixtures of distributions with not
more than two-point supports with the same mean value.

We give such representation for centered distributions p ∈ Θ(0):

p = p(0) · δ0 +
∞∑

k=1

∞∑
l=1

k + l∑∞
t=1 t · p(t)

p(−l)p(k) · p0
k,−l, (1)

where δ0 is the degenerate distribution with one-point support {0};
p0

k,−l is the centered distributions with two-point supports {−l, k}.
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Optimal strategies σ0(p) of Pl.1 for games G∞(p) with D[p] < ∞
and E[p] = 0

a) If a chance move chooses 0, then Player 1 stops the game.
b) If a chance move chooses z = k or z = −l, where k, l ∈ N, then
Player 1 chooses a point z2 = −l or z = k by means of lottery with
probabilities

Pp(p
0
k,−l|k) =

l · p(−l)∑∞
t=1 t · p(t)

; Pp(p
0
k,−l| − l) =

k · p(k)∑∞
t=1 t · p(t)

,

that are conditional probabilities of two-point distributions given one
point in their supports, corresponding to probability mixture (1).
c) Player 1 plays the optimal strategy σ0(·|z) for the state z in the
two-point game G∞(p0

k,−l).

This strategy guarantees Player 1 the gain

V∞(p) =
∞∑

k=1

∞∑
l=1

k + l∑∞
t=1 t · p(t)

p(−l)p(k) ·D[p0
k,−l]/2 = D[p]/2,

as the variance D[p] is a linear function over Θ(0).
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Theorem 3. For distributions p with finite variances D[p], the values
V∞(p) are given by a continuous, concave, and piecewise linear function
H. Its domains of linearity are

{p : E[p] ∈ [r, r + 1]}, r ∈ Z.

The function H is defined by its values

H(p) = D[p]/2,

at break hyperplanes

Θ(r) = {p : E[p] = r}.

For p : E[p] ∈ [r, r + 1] τr is the optimal strategy of Player 2.

For p ∈ Θ(r) σr is the optimal strategy of Player 1.

The strategy σr of Player 1 generates a symmetric random walk of
share price posterior expectations with an absorption that may occur
at any stage. The absorption means revealing of the true value of
share by Player 2.
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Multistage bidding with risky assets of two types.

Victor Domansky, Victoria Kreps (2013) Repeated games with
asymmetric information modeling financial markets with two
risky assets. RAIRO-Oper. Res. Vol.47, Is.3, 251–272.

Victor Domansky (2013) Symmetric representations of bivariate
distributions. Statistics and Probability Letters, 83, 1054–1061.

General trading mechanism

Bernard De Meyer (2010) Price dynamics on a stock market
with asymmetric information. Games and Economic Behavior,
69(1), 42-71.
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