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Modeling a discrete-time financial market with a random
preference relation (or preorder)

1= |n the real world, a portfolio is expressed in physical units, i.e.
the number of risky assets an agent holds. Even worse, these
quantities are integer-valued (except the cash account but we can
change the monetary unit).

1= |n practice, there are various kinds of transaction costs
generated by taxes, bid-ask spread, etc.. See for instance the
models of Schachermayer and Kabanov including proportional
transaction costs.
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Modeling a discrete-time financial market with a random
preference relation (or preorder)

1= The concepts of liquidation value and solvency are fundamental.

== At time t, can we rebalance a self-financing portfolio position
xt—1 € R? into x, € R47?

To do so, split the portfolio into two parts : x;—1 = x¢ + (x¢—1 — X¢)
and liquidate (if possible, i.e. without any debt) the position

Xt—1 — Xt.
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Modeling a discrete-time financial market with a random
preference relation (or preorder)

1= \We may introduce a stochastic liquidation function L; so that
we can rebalance a self-financing portfolio position

Xt—1 = xt + (xe—1 — xt) € R? into x; € R iff Ly(xt_1 — x¢) > 0.
1 More generally, if we consider the random set of solvable
positions G;, then we require that x;_1 — x; € G;.

In the Kabanov model, G; is the so called (random) solvency cone.
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Modeling a discrete-time financial market with a random
preference relation (or preorder)

Let us consider a stochastic basis (2, F, (F¢)t=o,...,T, P). Let
(Pt(x))¢=o0,...,7 be a Caratheodory function on
Qx{0,---, T} x RY i.e. satisfying :
@ (a) : For each w P-as., and every t =0,---, T, Pt(w,-) is
continuous on RY.
o (b) : For each (t,x) € {0,---, T} x RY, P;(-,x) € L°(R, F).
@ (c): P(0)>0as. forallt=0,---,T,
o (d): Forallt=0,---, T the property (P:(x) > 0 and
P.(y) > 0) for some x,y € R implies P:(x + y) > 0 holds
a.s.
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Modeling a discrete-time financial market with a random
preference relation (or preorder)

i Example, Pi(x) = —d(x, G;) where the graph of G; is
F: x B(RY)-measurable such that 0 € G;, G; + G; C G; and G; is
a.s. closed.

Definition

A portfolio process (V;)i=o,..., 7 is an (F¢)¢=o,..., T-adapted process
such that

Pt(vt_]_ - Vt) > 0, Vt = 07 ey, T as. (01)

1 For each t, v =" 42 if Pe(y1 —72) > 0 is a preorder on
LO(RY, F).
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Modeling a discrete-time financial market with a random
preference relation (or preorder)

The graph
GR(t) := {(11,72) € L%(R%, F) x L°(RY, F) : 72 =" m}

is closed in LO(RY, F) x L°(R?, F) since the function P satisfies
Condition (a). It follows that the preorder =* admits both a lower
and upper semi-continuous multi-utility representation ().

1 \We may also think for each w : x =5 y iff Py(w,x —y) > 0.
By Evren and Ok, as R? is locally compact and o-compact, the
random preorder =%“ has a countable continuous multi-utility
representation, i.e. a family & = U(w) of functions (u;) such that

x ="y iff ui(x) > wi(y), foralli.
;’K Evren O., Ok E.A. On the multi-utility representation of preference relations. Journal of mathematical

economics, 14 (2011), 4-5, 554-563.
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The Kabanov model with proportional transaction costs

e The random set G; is a polyhedral closed convex cone containing
Ri corresponding to the portfolios a time t whose positions can be
changed, paying transaction costs, into positives ones.

1 x =% y means x — y € G¢(w) we also denote by x >¢, .
1= There exists a countable multi-utility representation of the
random preorder =%%, precisely a family of random linear

mappings u;(t, x) = &(t,w)x.

e If two positions x, y € R? are such that x >G Yy, i.e. x—y € Gy,
that means that y is cheaper than x.
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A two-dimensional model with bid-ask spread and fixed
transaction costs

e The first position is a Cash account with S* =1 on [0, T] and
the second one is risky and modeled by S = S2.

e We suppose that there is a bid-ask spread [S(1 — €); S(1 + ¢€)].
e There are only transaction costs for the second position towards
the first one, precisely a fixed cost for each transaction we denote
by c.

e Besides, when y > 0, we suppose that the agent is rational
enough not to deliberately sell the stock when the bid-price is too
low to compensate for the fixed cost, i.e. S¢(1 —€)y — ¢t < 0. Let
us characterize (x,y) € G;.
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A two-dimensional model with bid-ask spread and fixed
transaction costs

e If y >0, this means that x + S;(1 — €;)y — ¢t > 0 or x > 0.

e If y <0, this means that x + S;(1 4+ €:)y — ¢t > 0.
i.e.

z=(x,y) ="z =X,y
& max(x = X' 4+ S(1 —e)(y —y') — e, x = x') > 0,
and (x —x' — )T+ S:(1+e)(y —y') >0
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A two-dimensional model with bid-ask spread and fixed
transaction costs

Figure: The grey-coloured domain corresponds to the set G; of solvent
points.
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Super-hedging portfolio processes in a discrete-time
financial market model defined by a preorder

e A portfolio V starting from Vy_ = 0 is an R%-valued process
satisfying the dynamics V;_1 =t V; forall t=0,..., T.

o It super replicates the European claim hr € L°(RY, F7) (resp.

the American claim (h¢)¢=o,..., 7) if VT =T ht (resp. Vi =t hy for
all t).
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Super-hedging portfolio processes in a discrete-time
general financial market model

1= We seek for a sub class V,Ti” of the super-replicating portfolio
processes V}, of a given payoff h we call minimum in the following
sense :

e if V € V), there exists V € V,’]”" such that V; =t V, for all ¢,

o if V€V and Vi =t V; Vt,V € V) then V; ~t V, for all t.

1 Without transaction costs, the minimal super replicating
portfolio price of an European claim (resp. American claim) is
unique and defined using the concept of essential supremum of a
family of random variables.
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How to generalize the concept of Essential Supremum of a
collection of real-valued random variables to a family of
vector-valued random variables ?

Definition

Let (&;)ies be a family of real-valued random variables. There
exists a unique random variable 1 € (—o0, 0] satisfying the
following properties :

()n=¢&, Viel

(2) If ' > &, Viel, theny >n.
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How to define a measurable version of the Pareto frontier ?

Definition

Let X be a set endowed with a family of utility functions (u;);e;-
An element x € X dominates (resp. strictly dominates) y € X if
ui(x) > ui(y) for all i € I (resp. uj(x) > uj(y) for all i € I and
uj(x) > uj(y) for some j € I).

Definition (Pareto frontier)

The Pareto frontier of X is the subset of X containing the efficient
points of X, i.e. the points of X which are not strictly dominated.
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Basic notations

e Define an order interval [x,y] :={z€ X: x>z >y} and
extend naturally the notation by putting

| —oo,x]:i={ze X: x =z}, [x,00={ze X: z>x}.

e The notation 'y > > where ', > are subsets means that
x1 = xp forall xy €1 and xp € 5
[M1,00[:= Nyer,{z € X: z= x1} etc.
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Essential supremum in L%(X)
The Model

e Let (Q, F, P) be a probability space. Let H be a sub-o-algebra of
F.

e We consider in the space L°(X) of X-valued random variables a
random preorder defined by a countable family

U={uj: j=1,2,...} of functions u; : Q x X — R with the
following properties :

(i) ui(.,x) € L°%(R, F) for every x € X ;

(i) uj(w,.) is continuous for almost all w € Q.

o If 41,72 € L%(X, F) the relation 72 = 1 means that

ui(v2) > uj(m) (as.) for j=1,2,....
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Essential supremum in L%(X)

Definition

Let T be a subset of L°(X, F). We denote by H-EsssupT the
maximal subset I of L%(X,H) such that the following conditions
hold :

(a) F=r;

(b) ify € L%(X, ) and ~ =T, then there is 4 € [ such that
vY=A

(c) ifA1,92 € T, then 41 = 4o implies 41 ~ As.
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Supremum with respect to a cone G C R

Let = be the partial order generated by a closed proper convex
cone G C RY. IfT C RY is such that x = T (i.e. x —T C G) for
some X € RY, then SupT # ().

= The Supremum of two points X and Y in R? with respect to a
cone G :
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Essential supremum in L°(RY) : existence

Theorem

Let = be a partial order in L°(RY) represented by a countable
family of random functions satisfying (i), (ii) and such that all
order intervals [y1(w), v2(w)], 72 = 71, are compacts a.s.. If the
subset T C LO(RY, F) is such that 5 = T for some 5 € L°(RY,H),
then H-Esssup " # ().
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Concept of Essential Maximum

Definition

Let H be a sub-c-algebra of F. We say that a non-empty subset
of L%(X, F) is H-decomposable if for any finite H-measurable
partition (A;)"_, of Q and all sequence (~y;)?_, of T,

e laviel.

Definition

Let T be a non-empty subset of L°(X,F) and H be a
sub-o-algebra of F. We denote by 'y, the H-decomposable
envelop of I, i.e. the smallest subset of L°(X, F) which is
H-decomposable and contains T.
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Concept of Essential Maximum

Definition

Let T be a non-empty subset of L%(X, F). We denote by Essmax; [
the largest subset fc Ty such that the following conditions hold :

(i) if v € T3, then there is 4 € [ such that 4 = ~;
(if) if 41,92 € [, then 41 = A, implies 41 = Az.
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Concept of Essential Maximum

Definition

Let T be a non-empty subset of L°(R?, F). We put

Essmaxl = {y € Ty : T3 NJ[y,o00[= ]}
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Essential Maximum : existence

Proposition

Let = be a partial order in L°(RY, F) represented by a countable
family of functions satiffying (i), (ii) and such that all order
intervals [y1(w), v2(w)], 72 = 71, are compacts a.s. Let [ be a
non-empty subset of L°(RY,H). Suppose that there exists

5 € LO(RY, F) such that 5 = I'. Then Essmax;I and Essmax[ are
non-empty sets and Essmax;[" = EssmaxT.

v
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Example in the deterministic case
={x: |x| <1}. Then Supl = (1,1) while

e Let X = R?, the partial order is generated by the cone Ri. Let
Maxl = {x: |[x| =1} NR3.

QwPF:{u,AL}

Mo

=Mk

= Z('l,%\ 6‘R"7r: l{'(z%)‘:l,}
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Minimal super-hedging prices in a discrete-time financial
market models of Kabanov

The usual discrete-time models with proportional transaction costs
can be described in an abstract setting as follows :

o Let (2, F, F = (Ft)t=1,... 7, P) be a filtered probability space.

e Let (Gt)¢=o,.., 7 be polyhedral random cones in RY s.t. the graph
At = {(w,x) : x € Ge(w)} is Fr x B(RY)-measurable for each t.
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Minimal super-hedging prices in a discrete-time financial
market model of Kabanov

A portfolio V starting from Vo_ = 0 is an R%valued process
satisfying the dynamics AV, := V; — V1 € —G; (Vi—1 =t V) for
allt=0,...,T.
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Minimal super-hedging portfolios in a discrete-time
financial model with transaction costs

European options

Proposition

Suppose that L°(Gsy1, Ft) C LO(Gt, Ft), t < T — 1 and suppose
there exists a least one V' € V such that VT >¢, ht. Then

Vmin # 0 and Vi, coincides with the set of solutions of backward
inclusions

Vi € (Ft, Geg1)-Esssup{ Vi1, t<T-1, Vyr=hr. (0.2)

Moreover, any W € V with Wt = Y7 is such that W =g V for
some V' € Vpin.

E. Lépinette . 29 /31



Minimal super-hedging portfolios in a discrete-time
financial model with transaction costs

American options

Proposition

Suppose there exists a process V € V such that V =¢ h. Then the
set Vmin is non-empty and coincides with the set of solutions of
backward inclusions

Vt € (.Ft, Gt)-EssminlLO((ht + Gt) | (Vt+1 aF Gt+1)7ft)7
t<T-1, Vir=hr.
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Thank you for your attention !

Emmanuel Lépinette
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