Financial market models defined by a random preference relation. Essential supremum and maximum of a family of random variables with respect to a random preference relation. Applications.

E. Lépinette ⁽¹⁾

joint work with Y.Kabanov (2)

⁽¹⁾ Paris-Dauphine University, ⁽²⁾ University of Franche-Comté

Advanced Methods in Mathematical Finance, Angers 2013 =

E. Lépinette

• Y. Kabanov and E.Lépinette. Essential supremum with respect to a random partial order. To appear in *Journal of Mathematical Economics*.

• Y. Kabanov and E.Lépinette. Essential supremum and essential maximum with respect to random preference relations. To appear in *Journal of Mathematical Economics*.

In the real world, a portfolio is expressed in physical units, i.e. the number of risky assets an agent holds. Even worse, these quantities are integer-valued (except the cash account but we can change the monetary unit).

In practice, there are various kinds of transaction costs generated by taxes, bid-ask spread, etc.. See for instance the models of Schachermayer and Kabanov including proportional transaction costs.

・ 同 ト ・ ヨ ト ・ ヨ ト

reason The concepts of liquidation value and solvency are fundamental.

■ At time *t*, can we rebalance a self-financing portfolio position $x_{t-1} \in \mathbf{R}^d$ into $x_t \in \mathbf{R}^d$? To do so, split the portfolio into two parts : $x_{t-1} = x_t + (x_{t-1} - x_t)$ and liquidate (if possible, i.e. without any debt) the position $x_{t-1} - x_t$.

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

^{ISF} We may introduce a stochastic liquidation function L_t so that we can rebalance a self-financing portfolio position $x_{t-1} = x_t + (x_{t-1} - x_t) \in \mathbf{R}^d$ into $x_t \in \mathbf{R}^d$ iff $L_t(x_{t-1} - x_t) \ge 0$.

Nore generally, if we consider the random set of solvable positions G_t , then we require that $x_{t-1} - x_t \in G_t$. In the Kabanov model, G_t is the so called (random) solvency cone.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let us consider a stochastic basis $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0, \dots, T}, P)$. Let $(P_t(x))_{t=0, \dots, T}$ be a Caratheodory function on $\Omega \times \{0, \dots, T\} \times \mathbf{R}^d$, i.e. satisfying :

- (a) : For each ω P-a.s., and every t = 0, · · · , T, P_t(ω, ·) is continuous on R^d.
- (b) : For each $(t,x) \in \{0,\cdots,T\} \times \mathbf{R}^d$, $P_t(\cdot,x) \in L^0(\mathbf{R},\mathcal{F}_t)$.
- (c) : $P_t(0) \ge 0$ a.s. for all $t = 0, \cdots, T$,
- (d) : For all $t = 0, \dots, T$ the property $(P_t(x) \ge 0$ and $P_t(y) \ge 0)$ for some $x, y \in \mathbf{R}^d$ implies $P_t(x+y) \ge 0$ holds a.s.

イロト 不得 トイラト イラト 一日

IS Example, $P_t(x) = -d(x, G_t)$ where the graph of G_t is $\mathcal{F}_t \times \mathcal{B}(\mathbf{R}^d)$ -measurable such that $0 \in G_t$, $G_t + G_t \subseteq G_t$ and G_t is a.s. closed.

Definition

A portfolio process $(V_t)_{t=0,\dots,T}$ is an $(\mathcal{F}_t)_{t=0,\dots,T}$ -adapted process such that

$$P_t(V_{t-1}-V_t) \geq 0, \quad \forall t=0,\cdots,T \quad a.s.$$
 (0.1)

so For each t, $\gamma_1 \succeq^t \gamma_2$ if $P_t(\gamma_1 - \gamma_2) \ge 0$ is a preorder on $L^0(\mathbf{R}^d, \mathcal{F})$.

The graph

$$\mathrm{GR}(t) := \{(\gamma_1, \gamma_2) \in L^0(\mathbf{R}^d, \mathcal{F}) imes L^0(\mathbf{R}^d, \mathcal{F}): \ \gamma_2 \succeq^t \gamma_1\}$$

is closed in $L^{0}(\mathbb{R}^{d}, \mathcal{F}) \times L^{0}(\mathbb{R}^{d}, \mathcal{F})$ since the function P satisfies Condition (a). It follows that the preorder \succeq^{t} admits both a lower and upper semi-continuous multi-utility representation (*). We may also think for each $\omega : x \succeq^{t,\omega} y$ iff $P_{t}(\omega, x - y) \ge 0$. By Evren and Ok, as \mathbb{R}^{d} is locally compact and σ -compact, the random preorder $\succeq^{t,\omega}$ has a **countable** continuous multi-utility representation, i.e. a family $\mathcal{U} = \mathcal{U}(\omega)$ of functions (u_{i}) such that

$$x \succeq^{t,\omega} y$$
 iff $u_i(x) \ge u_i(y)$, for all *i*.

Evren O., Ok E.A. On the multi-utility representation of preference relations. Journal of mathematical economics, 14 (2011), 4-5, 554-563.

E. Lépinette

The Kabanov model with proportional transaction costs

• The random set G_t is a polyhedral closed convex cone containing \mathbf{R}^d_+ corresponding to the portfolios a time t whose positions can be changed, paying transaction costs, into positives ones.

w $x \succeq^{t,\omega} y$ means $x - y \in G_t(\omega)$ we also denote by $x \ge_{G_t} y$. There exists a countable multi-utility representation of the random preorder $\succeq^{t,\omega}$, precisely a family of random linear mappings $u_i(t,x) = \xi_i(t,\omega)x$.

• If two positions $x, y \in \mathbf{R}^d$ are such that $x \ge_{G_t} y$, i.e. $x - y \in G_t$, that means that y is cheaper than x.

イロト イヨト イヨト イヨト 二日

A two-dimensional model with bid-ask spread and fixed transaction costs

• The first position is a Cash account with $S^1 = 1$ on [0, T] and the second one is risky and modeled by $S = S^2$.

• We suppose that there is a bid-ask spread $[S(1-\epsilon); S(1+\epsilon)]$.

• There are only transaction costs for the second position towards the first one, precisely a fixed cost for each transaction we denote by *c*.

• Besides, when $y \ge 0$, we suppose that the agent is rational enough not to deliberately sell the stock when the bid-price is too low to compensate for the fixed cost, i.e. $S_t(1-\epsilon)y - c_t \le 0$. Let us characterize $(x, y) \in G_t$.

・ロト ・ 一下・ ・ ヨト・

A two-dimensional model with bid-ask spread and fixed transaction costs

- If $y \ge 0$, this means that $x + S_t(1 \epsilon_t)y c_t \ge 0$ or $x \ge 0$. • If y < 0, this means that $x + S_t(1 + \epsilon_t)y - c_t \ge 0$.
- If y < 0, this means that $x + 3t(1 + \epsilon_t)$. i.e.

$$egin{aligned} &z=(x,y)\succeq^t z'=(x',y')\ &\Leftrightarrow \max(x-x'+S_t(1-\epsilon_t)(y-y')-c_t,x-x')\geq 0,\ & ext{and}\ &(x-x'-c_t)^++S_t(1+\epsilon_t)(y-y')\geq 0 \end{aligned}$$

A two-dimensional model with bid-ask spread and fixed transaction costs

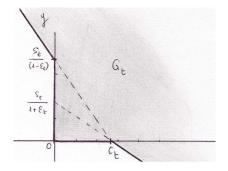


Figure: The grey-coloured domain corresponds to the set G_t of solvent points.

• • = • • = •

Super-hedging portfolio processes in a discrete-time financial market model defined by a preorder

- A portfolio V starting from $V_{0-} = 0$ is an \mathbb{R}^d -valued process satisfying the dynamics $V_{t-1} \succeq^t V_t$ for all $t = 0, \dots, T$.
- It super replicates the European claim $h_T \in L^0(\mathbb{R}^d, \mathcal{F}_T)$ (resp. the American claim $(h_t)_{t=0,\dots,T}$) if $V_T \succeq^T h_T$ (resp. $V_t \succeq^t h_t$ for all t).

イロト イヨト イヨト ・

Super-hedging portfolio processes in a discrete-time general financial market model

 \mathbb{T} We seek for a sub class \mathcal{V}_h^{min} of the super-replicating portfolio processes \mathcal{V}_h of a given payoff h we call minimum in the following sense :

- if $V \in \mathcal{V}_h$, there exists $\hat{V} \in \mathcal{V}_h^{min}$ such that $V_t \succeq^t \hat{V}_t$ for all t,
- if $\hat{V} \in \mathcal{V}_h^{min}$ and $\hat{V}_t \succeq^t V_t \ \forall t, V \in \mathcal{V}_h$ then $\hat{V}_t \sim^t V_t$ for all t.

Without transaction costs, the minimal super replicating portfolio price of an European claim (resp. American claim) is unique and defined using the concept of essential supremum of a family of random variables.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How to generalize the concept of Essential Supremum of a collection of real-valued random variables to a family of vector-valued random variables?

Definition

Let $(\xi_i)_{i \in I}$ be a family of real-valued random variables. There exists a unique random variable $\eta \in (-\infty, \infty]$ satisfying the following properties : (1) $\eta \ge \xi_i$, $\forall i \in I$. (2) If $\eta' \ge \xi_i$, $\forall i \in I$, then $\eta' \ge \eta$.

• • = • • = •

Definition

Let X be a set endowed with a family of utility functions $(u_i)_{i \in I}$. An element $x \in X$ dominates (resp. strictly dominates) $y \in X$ if $u_i(x) \ge u_i(y)$ for all $i \in I$ (resp. $u_i(x) \ge u_i(y)$ for all $i \in I$ and $u_j(x) > u_j(y)$ for some $j \in I$).

Definition (Pareto frontier)

The Pareto frontier of X is the subset of X containing the efficient points of X, i.e. the points of X which are not strictly dominated.

< □ > < □ > < □ > < □ > < □ > < □ >

Basic notations

• Define an order interval $[x, y] := \{z \in X : x \succeq z \succeq y\}$ and extend naturally the notation by putting

$$]-\infty,x]:=\{z\in X:\ x\succeq z\},\qquad [x,\infty[:=\{z\in X:\ z\succeq x\}.$$

• The notation $\Gamma_1 \succeq \Gamma_2$ where Γ_1, Γ_2 are subsets means that $x_1 \succeq x_2$ for all $x_1 \in \Gamma_1$ and $x_2 \in \Gamma_2$; $[\Gamma_1, \infty[:= \cap_{x_1 \in \Gamma_1} \{z \in X : z \succeq x_1\} \text{ etc.}$

イロト 不得 トイヨト イヨト 二日

Essential supremum in $L^0(X)$

The Model

- Let (Ω, \mathcal{F}, P) be a probability space. Let \mathcal{H} be a sub- σ -algebra of \mathcal{F} .
- We consider in the space $L^0(X)$ of X-valued random variables a random preorder defined by a countable family $\mathcal{U} = \{u_j : j = 1, 2, ...\}$ of functions $u_j : \Omega \times X \to \mathbf{R}$ with the following properties :

Essential supremum in $L^0(X)$

Definition

Let Γ be a subset of $L^0(X, \mathcal{F})$. We denote by \mathcal{H} -Esssup Γ the maximal subset $\hat{\Gamma}$ of $L^0(X, \mathcal{H})$ such that the following conditions hold :

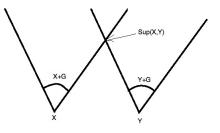
・ 何 ト ・ ヨ ト ・ ヨ ト

Supremum with respect to a cone $G \subset \mathbf{R}^d$

Theorem

Let \succeq be the partial order generated by a closed proper convex cone $G \subseteq \mathbb{R}^d$. If $\Gamma \subseteq \mathbb{R}^d$ is such that $\bar{x} \succeq \Gamma$ (i.e. $\bar{x} - \Gamma \subseteq G$) for some $\bar{x} \in \mathbb{R}^d$, then $\sup \Gamma \neq \emptyset$.

The Supremum of two points X and Y in \mathbb{R}^2 with respect to a cone G :



Essential supremum in $L^0(\mathbf{R}^d)$: existence

Theorem

Let \succeq be a partial order in $L^0(\mathbf{R}^d)$ represented by a countable family of random functions satisfying (i), (ii) and such that all order intervals $[\gamma_1(\omega), \gamma_2(\omega)], \gamma_2 \succeq \gamma_1$, are compacts a.s.. If the subset $\Gamma \subseteq L^0(\mathbf{R}^d, \mathcal{F})$ is such that $\bar{\gamma} \succeq \Gamma$ for some $\bar{\gamma} \in L^0(\mathbf{R}^d, \mathcal{H})$, then \mathcal{H} -Esssup $\Gamma \neq \emptyset$.

Definition

Let \mathcal{H} be a sub- σ -algebra of \mathcal{F} . We say that a non-empty subset Γ of $L^0(X, \mathcal{F})$ is \mathcal{H} -decomposable if for any finite \mathcal{H} -measurable partition $(A_i)_{i=1}^n$ of Ω and all sequence $(\gamma_i)_{i=1}^n$ of Γ , $\sum_{i=1}^n 1_{A_i} \gamma_i \in \Gamma$.

Definition

Let Γ be a non-empty subset of $L^0(X, \mathcal{F})$ and \mathcal{H} be a sub- σ -algebra of \mathcal{F} . We denote by $\Gamma_{\mathcal{H}}$ the \mathcal{H} -decomposable envelop of Γ , i.e. the smallest subset of $L^0(X, \mathcal{F})$ which is \mathcal{H} -decomposable and contains Γ .

Concept of Essential Maximum

Definition

Let Γ be a non-empty subset of $L^0(X, \mathcal{F})$. We denote by $\operatorname{Essmax}_1\Gamma$ the largest subset $\hat{\Gamma} \subseteq \overline{\Gamma_H}$ such that the following conditions hold : (i) if $\gamma \in \overline{\Gamma_H}$, then there is $\hat{\gamma} \in \hat{\Gamma}$ such that $\hat{\gamma} \succeq \gamma$; (ii) if $\hat{\gamma}_1, \hat{\gamma}_2 \in \hat{\Gamma}$, then $\hat{\gamma}_1 \succeq \hat{\gamma}_2$ implies $\hat{\gamma}_1 = \hat{\gamma}_2$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Concept of Essential Maximum

Definition

Let Γ be a non-empty subset of $L^0(\mathbb{R}^d, \mathcal{F})$. We put $\operatorname{Essmax} \Gamma = \{\gamma \in \overline{\Gamma_H} : \ \overline{\Gamma_H} \cap [\gamma, \infty[=[\gamma]]\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Essential Maximum : existence

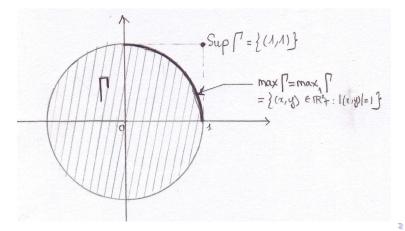
Proposition

Let \succeq be a partial order in $L^0(\mathbf{R}^d, \mathcal{F})$ represented by a countable family of functions satiffying (i), (ii) and such that all order intervals $[\gamma_1(\omega), \gamma_2(\omega)], \gamma_2 \succeq \gamma_1$, are compacts a.s. Let Γ be a non-empty subset of $L^0(\mathbf{R}^d, \mathcal{H})$. Suppose that there exists $\bar{\gamma} \in L^0(\mathbf{R}^d, \mathcal{F})$ such that $\bar{\gamma} \succeq \Gamma$. Then $\mathrm{Essmax}_1\Gamma$ and $\mathrm{Essmax}\Gamma$ are non-empty sets and $\mathrm{Essmax}_1\Gamma = \mathrm{Essmax}\Gamma$.

く 同 ト く ヨ ト く ヨ ト

Example in the deterministic case

• Let $X = \mathbf{R}^2$, the partial order is generated by the cone \mathbf{R}^2_+ . Let $\Gamma = \{x : |x| \le 1\}$. Then $\operatorname{Sup} \Gamma = (1, 1)$ while $\operatorname{Max} \Gamma = \{x : |x| = 1\} \cap \mathbf{R}^2_+$.



Minimal super-hedging prices in a discrete-time financial market models of Kabanov

The usual discrete-time models with proportional transaction costs can be described in an abstract setting as follows :

- Let $(\Omega, F, \mathcal{F} = (\mathcal{F}_t)_{t=1,...,T}, P)$ be a filtered probability space.
- Let $(G_t)_{t=0,...,T}$ be polyhedral random cones in \mathbf{R}^d s.t. the graph $\Delta_t := \{(\omega, x) : x \in G_t(\omega)\}$ is $\mathcal{F}_t \times \mathcal{B}(\mathbf{R}^d)$ -measurable for each t.

イロト イヨト イヨト 一日

Minimal super-hedging prices in a discrete-time financial market model of Kabanov

A portfolio V starting from $V_{0-} = 0$ is an \mathbb{R}^d -valued process satisfying the dynamics $\Delta V_t := V_t - V_{t-1} \in -G_t (V_{t-1} \succeq^t V_t)$ for all $t = 0, \ldots, T$.

・ロト ・四ト ・ヨト ・ヨト

Minimal super-hedging portfolios in a discrete-time financial model with transaction costs European options

Proposition

Suppose that $L^{0}(G_{t+1}, \mathcal{F}_{t}) \subseteq L^{0}(G_{t}, \mathcal{F}_{t})$, $t \leq T - 1$ and suppose there exists a least one $V \in \mathcal{V}$ such that $V_{T} \geq_{G_{T}} h_{T}$. Then $\mathcal{V}_{min} \neq \emptyset$ and \mathcal{V}_{min} coincides with the set of solutions of backward inclusions

 $V_t \in (\mathcal{F}_t, G_{t+1})$ -Esssup $\{V_{t+1}\}, t \leq T - 1, V_T = h_T.$ (0.2)

Moreover, any $W \in \mathcal{V}$ with $W_T \succeq Y_T$ is such that $W \succeq_G V$ for some $V \in \mathcal{V}_{min}$.

イロト 不得 トイラト イラト 一日

Minimal super-hedging portfolios in a discrete-time financial model with transaction costs American options

Proposition

Suppose there exists a process $V \in \mathcal{V}$ such that $V \succeq_G h$. Then the set \mathcal{V}_{min} is non-empty and coincides with the set of solutions of backward inclusions

 $V_t \in (\mathcal{F}_t, G_t)$ -Essmin₁ $\mathcal{L}^0((h_t + G_t) \cap (V_{t+1} + G_{t+1}), \mathcal{F}_t),$ $t \leq T - 1, \quad V_T = h_T.$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Thank you for your attention !

Emmanuel Lépinette

Advanced Methods in Mathematical Finance, Angers 2013

< □ > < □ > < □ > < □ > < □ > < □ >