Semi-Markov model for market microstructure and HF trading

Huyên PHAM

LPMA, University Paris Diderot

Conference "Advanced methods in Mathematical Finance" Angers, september 3-6, 2013

Joint work with Pietro FODRA EXQIM and LPMA, University Paris Diderot

(4回) (1日) (日)

Financial data modelling

• Continuous time price process $(P_t)_t$ over [0, T] observed at

 $P_0, P_{\tau}, \ldots, P_{n\tau}$

- Different modelling of P according to scales τ and T:
 - Macroscopic scale (hourly, daily observation data): Itô semimartingale
 - Microscopic scale (tick data) \rightarrow High frequency

(本部) (本語) (本語) (語)

Euribor contract, 2010, for different observation scales

EURIBOR [T: 1 Y / freq: 1 hour]

Huyên PHAM

Semi-Markov model for market microstructure and HF trading

æ

Stylized facts on HF data

Microstructure effects

- Discrete prices: tick data
- Irregular spacing of jump times: clustering of trading activity
- Mean-reversion: negative autocorrelation of consecutive variation prices

Figure: Eurostoxx contract, 2010 may 5, 9h-9h15, tick frequency

Huyên PHAM Semi-Markov model for market microstructure and HF trading

Limit order book

• Most of modern equities exchanges organized through a mechanism of *Limit Order Book* (LOB):

Figure: Instantaneous picture of a LOB

Huyên PHAM Semi-Markov model for market microstructure and HF trading

High frequency finance

Two main streams in literature:

- Models of intra-day asset price
 - Latent process approach: Gloter and Jacod (01), Ait Sahalia, Mykland and Zhang (05), Robert and Rosenbaum (11), etc
 - Point process approach: Bauwens and Hautsch (06), Cont and de Larrard (10), Bacry et al. (11), Abergel, Jedidi (11),

 \rightarrow Sophisticated models intended to reproduce microstructure effects, often for purpose of volatility estimation

- High frequency trading problems
 - Liquidation and market making in a LOB: Almgren, Cris (03), Alfonsi and Schied (10, 11), Avellaneda and Stoikov (08), etc

 \rightarrow Stochastic control techniques for optimal trading strategies based on classical models of asset price (arithmetic or geometric Brownian motion, diffusion models)

Objective

• Make a "bridge" between these two streams of literature:

► Construct a "simple " model for asset price in Limit Order Book (LOB)

- realistic: captures main stylized facts of microstructure
 - Diffuses on a macroscopic scale
 - Easy to estimate and simulate
- **tractable** (simple to analyze and implement) for dynamic optimization problem in high frequency trading
- \rightarrow Markov renewal and semi-Markov model approach

(本部) (本語) (本語) (語)

Model-free description of asset mid-price (constant bid-ask spread)

Marked point process

Evolution of the univariate mid price process (P_t) determined by:

- The timestamps (T_k)_k of its jump times ↔ N_t counting process: N_t = inf{n : ∑ⁿ_{k=1} T_k ≤ t}: modeling of volatility clustering, i.e. presence of spikes in intensity of market activity
- The marks (J_k)_k valued in Z \ {0}, representing (modulo the tick size) the price increment at T_k: modeling of the microstructure noise via mean-reversion of price increments

Semi-Markov model approach

Markov Renewal Process (MRP) to describe $(T_k, J_k)_k$.

- Largely used in reliability
- Independent paper by d'Amico and Petroni (13) using also semi Markov model for asset prices

伺下 イヨト イヨト

Jump side modeling

For simplicity, we assume $|J_k| = 1$ (on data, this is true 99,9% of the times) :

• J_k valued in $\{+1, -1\}$: side of the jump (upwards or downwards)

$$J_k = J_{k-1}B_k \tag{1}$$

 $(B_k)_k$ i.i.d. with law: $\mathbb{P}[B_k = \pm 1] = \frac{1 \pm \alpha}{2}$ with $\alpha \in [-1, 1)$. $\leftrightarrow (J_k)_k$ irreducible Markov chain with symmetric transition matrix:

$$Q_{lpha} = \left(egin{array}{cc} rac{1+lpha}{2} & rac{1-lpha}{2} \ rac{1-lpha}{2} & rac{1+lpha}{2} \end{array}
ight)$$

Remark: arbitrary random jump size can be easily considered by introducing an i.i.d. multiplication factor in (1).

(日本)(日本)(日本)(日本)

Mean reversion

• Under the stationary probability of $(J_k)_k$, we have:

$$\alpha = \operatorname{correlation}(J_k, J_{k-1})$$

• Estimation of α :

$$\hat{\alpha}_n = \frac{1}{n} \sum_{k=1}^n J_k J_{k-1}$$

 $\rightarrow \alpha \simeq -87,5\%$ (Euribor3m, 2010, 10h-14h) \rightarrow Strong mean reversion of price returns

(4回) (1日) (日)

Timestamp modeling

Conditionally on $\{J_k J_{k-1} = \pm 1\}$, the sequence of inter-arrival jump times $\{S_k = T_k - T_{k-1}\}$ is i.i.d. with distribution function F_{\pm} and density f_{\pm} :

$$\mathcal{F}_{\pm}(t) \;\;=\;\; \mathbb{P}ig[S_k \leq t | J_k J_{k-1} = \pm 1 ig].$$

Remarks

• The sequence $(S_k)_k$ is (unconditionally) i.i.d with distribution:

$$F = \frac{1+\alpha}{2}F_+ + \frac{1-\alpha}{2}F_-.$$

• $h_+ = \frac{1+\alpha}{2} \frac{f_+}{1-F}$ is the intensity function of price jump in the same direction, $h_- = \frac{1-\alpha}{2} \frac{f_-}{1-F}$ is the intensity function of price jump in the opposite direction

(日) (四) (王) (王) (王)

Non parametric estimation of jump intensity

Figure: Estimation of h_{\pm} as function of the renewal quantile

イロン イヨン イヨン イヨン

æ

Simulated price

Figure: 30 minutes simulation

Figure: 1 day simulation (D) (D) (E) (E) (E)

Huyên PHAM

Semi-Markov model for market microstructure and HF trading

Diffusive behavior at macroscopic scale

Scaling:

$$P_t^{(T)} = rac{P_{tT}}{\sqrt{T}}, \quad t \in [0,1].$$

Theorem

$$\lim_{T\to\infty} P^{(T)} \stackrel{(d)}{=} \sigma_{\infty} W,$$

where W is a Brownian motion, and σ^2_∞ is the macroscopic variance:

$$\sigma_{\infty}^2 = \lambda \left(\frac{1+\alpha}{1-\alpha}\right),$$

with $\lambda^{-1} = \int_0^\infty t dF(t)$.

Mean signature plot (realized volatility)

We consider the case of **delayed renewal** process:

• $S_n \rightsquigarrow F$, $n \ge 1$, with finite mean $1/\lambda$, and $S_1 \rightsquigarrow$ density $\lambda(1-F)$

 \rightarrow Price process P has stationary increments

Proposition

$$ar{V}(au) := rac{1}{ au} \mathbb{E}[(P_{ au} - P_0)^2] = \sigma_\infty^2 + \Big(rac{-2lpha}{1-lpha}\Big)rac{1-G_lpha(au)}{(1-lpha) au},$$

where $G_{\alpha}(t) = \mathbb{E}[\alpha^{N_t}]$ is explicitly given via its Laplace-Stieltjes transform \widehat{G}_{α} in terms of $\widehat{F}(s) := \int_{0^-}^{\infty} e^{-st} dF(t)$.

$$ar{V}(\infty) \ = \ \sigma^2_{_\infty}, \quad ext{and} \quad ar{V}(0^+) \ = \ \lambda.$$

Remark: Similar expression as in Robert and Rosenbaum (09) or Bacry et al. (11).

Signature Plot

Figure: Mean signature plot for $\alpha < 0$

イロン イヨン イヨン イヨン

Э

Introduction

Markov embedding of price process

• Define the last price jump direction:

$$I_t = J_{N_t}, t \ge 0,$$
 valued in $\{+1, -1\}$

and the elapsed time since the last jump:

$$S_t = t - \sup_{T_k \leq t} T_k, \quad t \geq 0.$$

► Then the price process (P_t) valued in $2\delta\mathbb{Z}$ is embedded in a Markov process with three **observable** state variables (P_t, I_t, S_t) with generator:

$$\mathcal{L}\varphi(p,i,s) = \frac{\partial\varphi}{\partial s} + h_{+}(s) [\varphi(p+2\delta i,i,0) - \varphi(p,i,s)] \\ + h_{-}(s) [\varphi(p-2\delta i,-i,0) - \varphi(p,i,s)],$$

向下 イヨト イヨト

Trading issue

Problem of an agent (market maker) who submits limit orders on both sides of the LOB: limit buy order at the best bid price and limit sell order at the best ask price, with the aim to gain the spread.

► We need to model the market order flow, i.e. the counterpart trade of the limit order

伺 とう きょう とう とう

Market trades

• A market order flow is modelled by a marked point process $(\theta_k, Z_k)_k$:

- $heta_k$: arrival time of the market order $\leftrightarrow M_t$ counting process
- Z_k valued in $\{-1, +1\}$: side of the trade.
 - $Z_k = -1$: trade at the best BID price (market sell order)
 - $Z_k = +1$: trade at the best ASK price (market buy order)

index n	θ_k	best ask	best bid	traded price	Z_k
1	9:00:01.123	98.47	98.46	98.47	+1
2	9:00:02.517	98.47	98.46	98.46	-1
3	9:00:02.985	98.48	98.47	98.47	-1

► Dependence modeling between market order flow and price in LOB

Trade timestamp modeling

• The counting process (M_t) of the market order timestamps $(\theta_k)_k$ is a Cox process with conditional intensity $\lambda_M(S_t)$.

Examples of parametric forms reproducing intensity decay when *s* is large:

$$egin{array}{rcl} \lambda^{exp}_{M}(s) &=& \lambda_{0}+\lambda_{1}s^{r}e^{-ks}\ \lambda^{power}_{M}(s) &=& \lambda_{0}+rac{\lambda_{1}s^{r}}{1+s^{k}}. \end{array}$$

with positive parameters λ_0 , λ_1 , r, k, estimated by MLE.

▲□→ ▲ □→ ▲ □→

Figure: Estimation of λ_M

<ロ> (四) (四) (注) (注) (三)

Strong and weak side of LOB

- \bullet We call strong side (+) of the LOB, the side in the same direction than the last jump, e.g. best ask when price jumped upwards.
- We call weak side (-) of the LOB, the side in the opposite direction than the last jump, e.g. best bid when price jumped upwards.

► We observe that trades (market order) arrive mostly on the weak side of the LOB.

Trade side modeling

• The trade sides are given by:

$$Z_k = \Gamma_k I_{\theta_k^-},$$

 $(\Gamma_k)_k$ i.i.d. valued in $\{+1, -1\}$ with law:

$$\mathbb{P}[\Gamma_k = \pm 1] = \frac{1 \pm \rho}{2}$$

for $\rho \in [-1,1]$.

(4回) (1日) (日)

Interpretation of ρ

$$\rho = \operatorname{corr}(Z_k, I_{\theta_k^-})$$

- ρ = 0: market order flow arrive independently at best bid and best ask (usual assumption in the existing literature)
- $\rho > 0$: market orders arrive more often in the strong side of the LOB
- $\rho <$ 0: market orders arrive more often in the weak side of the LOB
- Estimation of ρ : $\hat{\rho}_n = \frac{1}{n} \sum_{k=1}^n Z_k I_{\theta_k^-}$ leads to $\rho \simeq -50\%$: about 3 over 4 trades arrive on the weak side.
- $\blacktriangleright\ \rho$ related to adverse selection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Market making strategy

- Strategy control: predictable process $(\ell_t^+, \ell_t^-)_t$ valued in $\{0, 1\}$
 - $\ell_t^+ = 1$: limit order of fixed size L on the strong side: $+I_{t^-}$
 - $\ell_t^- = 1$: limit order of fixed size L on the weak side: $-I_{t^-}$
- Fees: any transaction is subject to a fixed cost $\varepsilon \geq 0$

Portfolio process:

- Cash $(X_t)_t$ valued in \mathbb{R} ,
- inventory $(Y_t)_t$ valued in a set \mathbb{Y} of \mathbb{Z}

Agent execution

- Execution of limit order occurs when:
 - A market trade arrives at θ_k on the strong (resp. weak) side if $Z_k I_{\theta_k^-} = +1$ (resp. -1), and with an executed quantity given by a distribution (price time priority/prorata) ϑ_L^+ (resp. ϑ_L^-) on $\{0, \ldots, L\}$
 - The **price jumps** at T_k and crosses the limit order price

Remark

 ϑ_L^{\pm} cannot be estimated on historical data. It has to be evaluated by a backtest with a zero intelligence strategy.

► Risks:

- Inventory \leftrightarrow price jump
- Adverse selection in market order trade

▲圖▶ ★ 国▶ ★ 国▶

Market making optimization

• Value function of the market making control problem:

$$v(t, s, p, i, x, y) = \sup_{(\ell^+, \ell^-)} \mathbb{E} \big[PNL_T - CLOSE(Y_T) - \eta \cdot RISK_{t,T} \big]$$

where $\eta \geq 0$ is the agent risk aversion and:

$$PNL_t = X_t + Y_t \cdot P_t, \quad (\text{ptf valued at the mid price})$$

$$CLOSE(y) = -(\delta + \varepsilon) \cdot |y|, \quad (\text{closure market order})$$

$$RISK_{t,T} = \int_t^T Y_u^2 \cdot d[P]_u, \quad (\text{no inventory imbalance})$$

・回 ・ ・ ヨ ・ ・ ヨ ・

Variable reduction to strong inventory and elapsed time

Theorem

The value function is given by:

$$v(t,s,p,i,x,y) = x + yp + \omega_{yi}(t,s)$$

where $\omega_q(t,s) = \omega(t,s,q)$ is the unique viscosity solution to the integro ODE:

$$\begin{split} \left[\partial_t + \partial_s\right] \omega + 2\delta(h^+ - h^-)q - 4\delta^2\eta(h^+ + h^-)q^2 \\ &+ \max_{\ell \in \{0,1\}, q-\ell L \in \mathbb{Y}} \mathcal{L}^{\ell}_+ \omega + \max_{\ell \in \{0,1\}, q+\ell L \in \mathbb{Y}} \mathcal{L}^{\ell}_- \omega = 0 \\ &\omega_q(\mathcal{T}, s) = -|q| \left(\delta + \epsilon\right) \end{split}$$

in $[0, T] \times \mathbb{R}_+ \times \mathbb{Y}$.

・ロン ・日ン ・ヨン ・ヨン

э

$$\mathcal{L}^\ell_\pm \ = \ \mathcal{L}^\ell_{\pm, \scriptscriptstyle M} + \mathcal{L}^\ell_{\pm, \scriptstyle jump}$$

• favorable execution of random size $\leq L$ by market order

$$egin{aligned} \mathcal{L}^\ell_{\pm,\scriptscriptstyle M} \, \omega &:= & \lambda_{\pm,\scriptscriptstyle M}(s) \int ig[\omega(t,s,q \mp \mathbf{k}\ell) - \omega(t,s,q) \ &+ (+\delta - arepsilon) k\ell ig] artheta^\pm_L(\mathbf{dk}) \end{aligned}$$

• unfavorable execution of maximal size *L* due to price jump

$$\mathcal{L}^{\ell}_{\pm,jump}\,\omega \;\;:=\;\; h_{\pm}(s)ig[\omega(t,0,\pm q-\mathsf{L}\ell)-\omega(t,s,q)+(-\delta-arepsilon)\mathsf{L}\ellig]$$

with

$$\lambda_{\pm,M}(s) := \frac{1 \pm
ho}{2} \cdot \lambda_{M}(s)$$
 (trade intensities)

・ロン ・回と ・ヨン ・ヨン

Optimal policy shape: ho = 0, execution probability = 10%

OPTIMAL CONTROL

(4回) (4回) (4回)

æ

Optimal policy shape: $\rho = 0$, execution probability = 5%

OPTIMAL CONTROL

(4回) (4回) (4回)

э

Optimal policy shape: $\rho = -0, 33$, execution probability = 5%

OPTIMAL CONTROL

・ロン ・回と ・ヨン ・ヨン

æ

Concluding remarks

- Markov renewal approach for market microstructure
 - + Easy to understand and simulate
 - + Non parametric estimation based on i.i.d. sample data
 - + dependency between price return J_k and jump time T_k
 - + Reproduces well microstructure effects, diffuses on macroscopic scale
 - + Markov embedding with observable state variables (\neq Hawkes process approach)
 - + Enables to deal efficiently with trading optimization problem
 - MRP forgets correlation between inter-arrival jump times $\{S_k = T_k T_{k-1}\}_k$
- Extension to multivariate price model

(ロ) (同) (E) (E) (E)