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Different concepts of hedging

Dynamic hedging: portfolio gets adjusted continuously

⊕ Typically gives a good approximation to the option price
	 Incurs high transaction costs; high model risk for exotic options

Static hedging: hedging instruments get purchased only at inception
of the contract

⊕ Minimal transaction costs, often model independent
	 Does not reflect the path-dependence of exotic options, therefore gives
only a poor hedging performance

Semi-static hedging: trading takes place at inception and at finitely
many random times ’when events happen’

⊕ Yields sometimes an exact match to the payoff of certain exotic options
by very basic options
~ Is to a certain degree model-dependent (to be discussed)
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Hierarchy of derivatives

1 Exotic derivatives: Barrier options, Asian options, Lookback
options, Variance Swaps etc. : Should be converted into simpler ones
by dual market principles or semi-statically hedged. This sometimes
can be achieved by a hedging portfolio of European options.

2 European options: Payoff depends only on the price of the
underlying asset at maturity. These can be approximated statically by
a portfolio of simple call and put options as well as futures at various
strike levels.

3 Plain vanilla options: These can be hedged dynamically with the
underlying asset.
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Dual processes

Definition
Let S = exp (X ) be a martingale with E [ST ] = 1. We define the dual
measure P̂ by

dP̂

dP
= ST .

The dual process Ŝ is

Ŝ =
1
S
= exp (−X ) .

By Bayes’formula, Ŝ is a martingale with respect to P̂.

Under certain symmetry assumptions, Asian and lookback options
with floating and fixed strike are equivalent under duality, see
Eberlein, Papapantoleon, Shiryaev (2008).
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The Russian option

Let S be the price process of a risky asset, r > 0 the interest rate.
The value of the infinite time horizon Russian option (Shepp &
Shiryaev (1994)) is

V = sup
τ≥0

EP

[
e−rτ sup

0≤u≤τ
Su

]
where the supremum is taken over all stopping times τ.

Suppose S is a P-martingale and define a consistent family of dual
measures (QT ) via dQT /dP = ST /S0 so that there exists a measure
Q on (Ω,F∞) such that the restriction of Q to FT equals QT .

The value of the Russian option can then be written as

V = sup
τ≥0

EP

[
Sτe−rτ sup

0≤u≤τ

Su
Sτ

]
= sup

τ≥0
EQ

[
e−rτ sup

0≤u≤τ

Su
Sτ

]
.
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Let M be a continuous (P,F)-martingale vanishing at zero and such
that [M ]∞ = ∞, and consider its DDS representation M = B[M ]. The
process M is called an Ocone martingale if B and [M ] are
independent.

Let B,W be two independent Brownian motions. An example of an
Ocone martingale is provided by

dM = V dB (1)

where V is FW -adapted and such that M is a martingale. In this case
we say that M is an Ocone SV-model.

We assume that there exists a weak solution Z to the SDE

dZ = dM +
1
2

sgn(Z ) d [M ].

This is true if M is an Ocone SV-model, but it is doubtful whether it
is true for Ocone martingales in general (Vostrikova & Yor (2000)).
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Variation of a theme by Lévy: relates the reflected process |Z | to the
drifting process

X = M − 1
2
[M ]

reflected off its maximum X ∗ := supX .
Proposition. Let M be an Ocone SV-model, then

|Z | ∼ X ∗ − X .

As a consequence, the value of the Russian option can then be
written as

V = sup
τ≥0

EP

[
Sτe−rτ sup

0≤u≤τ

Su
Sτ

]
= sup

τ≥0
EQ

[
e−rτ sup

0≤u≤τ

Su
Sτ

]
= sup

τ≥0
EQ

[
e−rτe |Zτ |

]
.
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Overview

Let the price process be modelled as a continuous stochastic volatility
model with correlation.

Consider a down-and-in call with strike higher than the barrier level,
or its up-and-in put analogue.

We provide a replicating portfolio by trading in stock, realized
volatility and cumulative volatility.

In contrast to market completion by trading in stock and a vanilla
option, this does not require to solve a PDE.

Our method relies on a general self-duality result, whereby duality is
to be understood in the sense of dual market; see Eberlein,
Papapantoleon and Shiryaev (2008).
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Motivation

Let S be the price process of some risky asset, modelled as a
geometric Brownian motion.

Consider a down-and-in call option with strike price K , maturity T
and barrier level B < K . We denote τ := inf{t : St ≤ B} and
assume S0 > B and that the interest rate is zero.

If the barrier has been hit before T , the fair price of this option at the
barrier is

EP
τ

[
(ST −K )+

]
,

where EP
τ denotes the conditional expectation with respect to the

Brownian filtration (Ft ).
Carr & Chou (1997): This conditional expectation is equal to

EP
τ

[
ST
B

(
B2

ST
−K

)+]
.
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Self-Duality

Definition. A non-negative adapted process S is self-dual if for any
non-negative Borel function g and any stopping time τ ∈ [0,T ],

EP
τ

[
g
(
ST
Sτ

)]
= EP

τ

[(
ST
Sτ

)
g
(
Sτ

ST

)]
.

The semi-static replication of the down-and-in call works more
generally for continuous self-dual price processes: Carr & Lee (2009),
Molchanov & Schmutz (2010). A typical example is a stochastic
volatility model where price process and volatility are uncorrelated.
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Correlated stochastic volatility models

Consider the following stochastic volatility model on a time interval
[0,T ] under a risk-neutral measure P :

dSt = r dt + σ(Vt )St dZt , S0 = s0 > 0,

dVt = µ(Vt ) dt + γ(Vt ) dWt , V0 = v0 > 0.

Here Z ,W are two Brownian motions with correlation ρ ∈ [−1, 1].
Let Z = ρW + ρW⊥, where W and W⊥ are independent standard
Brownian motions and ρ =

√
1− ρ2.

We assume that the functions σ, µ,γ are such that there exists a
weak solution (S ,V ), and that σ (V ) is non-zero on [0,T ]. The
filtration is set to be F = FS ,V , the filtration generated by S and V .
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Main idea to deal with the asymmetry risk: a multiplicative
decomposition

S = M × R
of the price process S into a self-dual part M and an asymmetric
remainder term R.
We take RT as Radon-Nikodym derivative to deal with the
asymmetry problem via a change of measure:

dQ

dP
|Ft= e−rtRt , t ∈ [0,T ].

The modified price process D under the measure Q is defined as

D =
S
R2
=
M
R
.

We denote by Q̂ the dual measure associated with the process D with
respect to Q, where

dQ̂

dQ
|Ft= ertDt , t ∈ [0,T ].
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General self-duality

The general self-duality holds in our model: for all positive Borel
functions g , stopping times τ ∈ [0,T ],

EP
τ

[
g
(
ST
Sτ

)]
= E Q̂

τ

[
g
(
Dτ

DT

)]
,

as well as the dual general self-duality:

EQ
τ

[
g
(
DT
Dτ

)]
= E P̂

τ

[
g
(
Sτ

ST

)]
.

In the classical self-dual case, self-duality and dual self-duality
coincide.
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The fair price of the same down-and-in call as before at the barrier is

EP
τ

[
e−r (T−τ) (ST −K )+

]
.

This expectation is diffi cult to evaluate in our context. By the general
self-duality, this equals (τ < T )

EQ
τ

[
ΓQ

τ

]
= KEQ

τ

[
e−r (T−τ)

(
B
K
− DT
Dτ

)+]
.

In contrast to Sτ = B, here Dτ is a random variable. Moreover, D is
not a traded instrument, however can be explicitly written as product
of S and some functional of the volatility.
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Replicating hedging strategy

Recall that

ΓQ
τ = K

(
B
K
− DT
Dτ

)+
.

We write

u (x) = K
(
B
K
− x
)+

.

By Ito’s formula,

u
(
DT
Dτ

)
= u(1) +

∫ T

τ

∂u
∂x
· Dt
St
dSt − 2ρ

∫ T

τ

∂u
∂x
Dt

σ(Vt )
γ(Vt )

dVt

− 2r
∫ T

τ

∂u
∂x
Dt dt +

∫ T

τ

(
∂u
∂x
Dt

(
ρ2 + 2ρ

µ(Vt )
σ(Vt )γ(Vt )

)
+
1
2

∂2u
∂x2

D2t

(
1
S2t
+ 4ρ2 − 4ρ2

St

))
σ2(Vt ) dt.
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Finally, substitute

Dt = St exp
(
−2rt − 2ρ

∫ t

0

σ(Vs )
γ(Vs )

dVs −
∫ t

0

σ(Vs )µ(Vs )
γ(Vs )

ds
)

× exp
(

ρ2
∫ t

0
σ2(Vs ) ds

)
.

This gives a replicating hedge by dynamically trading in stock,
realized variance and bond.

By using Malliavin calculus, we obtain pricing formulae involving
higher greeks.

Moreover, we give a second order approximation to the price of the
barrier option.
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Some notation

v2t =
1

T−t
∫ T
t E

Q
(

σ2s
∣∣Ft) ds. That is, v2t denotes the squared time

future average volatility.

Nt =
∫ T
0 E

Q
(

σ2s
∣∣Ft) ds.

For all t < T , Vt denotes the value at time t of a put option with
payoff

G (t,D) = K
(
B
K
− DT
Dt

)+
.
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Approximation of barrier option price

Vt ≈ PBS (t,Xt , vt )

+
ρ

2
H (t,Xt , vt )EQ

[∫ T

t
e−r (s−t)σs d 〈N,W 〉s

∣∣∣∣Ft]
+
K
8
J (t,Xt , vt )EQ

[∫ T

t
e−r (s−t)d 〈N,N〉s

∣∣∣∣Ft] . (2)

Note that, in the above equation, H (t,Xt , vt ) and J (t,Xt , vt ) are
model-independent and can be written explicitly as:

H (t,Xt , vt ) =
eXt

v2t (T − t)
√
2π

exp
(
−d

2
+

2

)
(−d−)

and

J (t,Xt , vt ) =
eXt(

vt
√
T − t

)3√
2π

exp
(
−d

2
+

2

)
(d+d− − 1) .
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Conclusion: for symmetric continuous SV models, the classical
method breaks down in the case there is a significant skewness. One
has to hedge also with volatility related instruments.
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