Hedging Barrier Options via a General Self-Duality

Thorsten Rheinländer

Vienna University of Technology

September 1, 2013

Thorsten Rheinländer (Vienna University of THedging Barrier Options via a General Self-Di

September 1, 2013 1 / 20

• Dynamic hedging: portfolio gets adjusted continuously

 \oplus Typically gives a good approximation to the option price \ominus Incurs high transaction costs; high model risk for exotic options

• **Static hedging:** hedging instruments get purchased only at inception of the contract

 \oplus Minimal transaction costs, often model independent \ominus Does not reflect the path-dependence of exotic options, therefore gives only a poor hedging performance

• Semi-static hedging: trading takes place at inception and at finitely many random times 'when events happen'

 \oplus Yields sometimes an exact match to the payoff of certain exotic options by very basic options

 \circledast Is to a certain degree model-dependent (to be discussed)

- Exotic derivatives: Barrier options, Asian options, Lookback options, Variance Swaps etc. : Should be converted into simpler ones by dual market principles or *semi-statically* hedged. This sometimes can be achieved by a hedging portfolio of European options.
- European options: Payoff depends only on the price of the underlying asset at maturity. These can be approximated *statically* by a portfolio of simple call and put options as well as futures at various strike levels.
- Plain vanilla options: These can be hedged dynamically with the underlying asset.

Dual processes

Definition

Let $S = \exp{(X)}$ be a martingale with $E[S_T] = 1$. We define the dual measure $\widehat{\mathbb{P}}$ by

$$\frac{d\mathbb{P}}{d\mathbb{P}}=S_{\mathcal{T}}.$$

The dual process \widehat{S} is

$$\widehat{S} = rac{1}{S} = \exp\left(-X
ight).$$

By Bayes' formula, \widehat{S} is a martingale with respect to $\widehat{\mathbb{P}}$.

• Under certain symmetry assumptions, Asian and lookback options with floating and fixed strike are equivalent under duality, see Eberlein, Papapantoleon, Shiryaev (2008).

The Russian option

 Let S be the price process of a risky asset, r > 0 the interest rate. The value of the infinite time horizon Russian option (Shepp & Shiryaev (1994)) is

$$V = \sup_{\tau \ge 0} E_{\mathbb{P}} \left[e^{-r\tau} \sup_{0 \le u \le \tau} S_u \right]$$

where the supremum is taken over all stopping times τ .

- Suppose S is a \mathbb{P} -martingale and define a consistent family of dual measures (\mathbb{Q}_T) via $d\mathbb{Q}_T/dP = S_T/S_0$ so that there exists a measure \mathbb{Q} on $(\Omega, \mathcal{F}_{\infty})$ such that the restriction of \mathbb{Q} to \mathcal{F}_T equals \mathbb{Q}_T .
- The value of the Russian option can then be written as

$$V = \sup_{\tau \ge 0} E_{\mathbb{P}} \left[S_{\tau} e^{-r\tau} \sup_{0 \le u \le \tau} \frac{S_u}{S_{\tau}} \right] = \sup_{\tau \ge 0} E_{\mathbb{Q}} \left[e^{-r\tau} \sup_{0 \le u \le \tau} \frac{S_u}{S_{\tau}} \right]$$

- Let M be a continuous (\mathbb{P}, \mathbb{F}) -martingale vanishing at zero and such that $[M]_{\infty} = \infty$, and consider its DDS representation $M = B_{[M]}$. The process M is called an **Ocone martingale** if B and [M] are independent.
- Let *B*, *W* be two independent Brownian motions. An example of an Ocone martingale is provided by

$$dM = V \, dB \tag{1}$$

where V is \mathbb{F}^{W} -adapted and such that M is a martingale. In this case we say that M is an Ocone SV-model.

• We assume that there exists a weak solution Z to the SDE

$$dZ = dM + \frac{1}{2} \operatorname{sgn}(Z) d[M].$$

This is true if M is an Ocone SV-model, but it is doubtful whether it is true for Ocone martingales in general (Vostrikova & Yor (2000)).

 Variation of a theme by Lévy: relates the reflected process |Z| to the drifting process

$$X = M - \frac{1}{2}[M]$$

reflected off its maximum $X^* := \sup X$.

• **Proposition.** Let *M* be an Ocone SV-model, then

$$|Z| \sim X^* - X.$$

 As a consequence, the value of the Russian option can then be written as

$$V = \sup_{\tau \ge 0} E_{\mathbb{P}} \left[S_{\tau} e^{-r\tau} \sup_{0 \le u \le \tau} \frac{S_u}{S_{\tau}} \right]$$
$$= \sup_{\tau \ge 0} E_{\mathbb{Q}} \left[e^{-r\tau} \sup_{0 \le u \le \tau} \frac{S_u}{S_{\tau}} \right] = \sup_{\tau \ge 0} E_{\mathbb{Q}} \left[e^{-r\tau} e^{|Z_{\tau}|} \right]$$

- Let the price process be modelled as a continuous stochastic volatility model with correlation.
- Consider a down-and-in call with strike higher than the barrier level, or its up-and-in put analogue.
- We provide a replicating portfolio by trading in stock, realized volatility and cumulative volatility.
- In contrast to market completion by trading in stock and a vanilla option, this does not require to solve a PDE.
- Our method relies on a general self-duality result, whereby duality is to be understood in the sense of dual market; see Eberlein, Papapantoleon and Shiryaev (2008).

Motivation

- Let S be the price process of some risky asset, modelled as a geometric Brownian motion.
- Consider a down-and-in call option with strike price K, maturity T and barrier level B < K. We denote $\tau := \inf\{t : S_t \le B\}$ and assume $S_0 > B$ and that the interest rate is zero.
- If the barrier has been hit before *T*, the fair price of this option at the barrier is

$$\mathbf{E}^{\mathbb{P}}_{\tau}\left[\left(S_{T}-\mathbf{K}
ight)^{+}
ight]$$
 ,

where $E_{\tau}^{\mathbb{P}}$ denotes the conditional expectation with respect to the Brownian filtration (\mathcal{F}_t) .

I

• Carr & Chou (1997): This conditional expectation is equal to

$$E_{\tau}^{\mathbb{P}}\left[\frac{S_{T}}{B}\left(\frac{B^{2}}{S_{T}}-K\right)^{+}\right].$$

Definition. A non-negative adapted process S is **self-dual** if for any non-negative Borel function g and any stopping time $\tau \in [0, T]$,

$$E_{\tau}^{\mathbb{P}}\left[g\left(\frac{S_{T}}{S_{\tau}}\right)\right] = E_{\tau}^{\mathbb{P}}\left[\left(\frac{S_{T}}{S_{\tau}}\right)g\left(\frac{S_{\tau}}{S_{\tau}}\right)\right]$$

 The semi-static replication of the down-and-in call works more generally for continuous self-dual price processes: Carr & Lee (2009), Molchanov & Schmutz (2010). A typical example is a stochastic volatility model where price process and volatility are uncorrelated.

Correlated stochastic volatility models

Consider the following stochastic volatility model on a time interval
 [0, T] under a risk-neutral measure P:

$$\begin{aligned} dS_t &= r \, dt + \sigma(V_t) S_t \, dZ_t, & S_0 &= s_0 > 0, \\ dV_t &= \mu(V_t) \, dt + \gamma(V_t) \, dW_t, & V_0 &= v_0 > 0. \end{aligned}$$

- Here Z, W are two Brownian motions with correlation $\rho \in [-1, 1]$. Let $Z = \rho W + \overline{\rho} W^{\perp}$, where W and W^{\perp} are independent standard Brownian motions and $\overline{\rho} = \sqrt{1 - \rho^2}$.
- We assume that the functions σ , μ , γ are such that there exists a weak solution (S, V), and that $\sigma(V)$ is non-zero on [0, T]. The filtration is set to be $\mathbb{F} = \mathbb{F}^{S,V}$, the filtration generated by S and V.

• Main idea to deal with the *asymmetry risk*: a multiplicative decomposition

$$S = M \times R$$

of the price process S into a self-dual part M and an asymmetric remainder term R.

• We take *R_T* as Radon-Nikodym derivative to deal with the asymmetry problem via a change of measure:

$$\frac{d\mathbb{Q}}{d\mathbb{P}}\mid_{\mathcal{F}_t}=e^{-rt}R_t, \qquad t\in[0,T].$$

• The modified price process D under the measure $\mathbb Q$ is defined as

$$D=\frac{S}{R^2}=\frac{M}{R}.$$

 \bullet We denote by $\widehat{\mathbb{Q}}$ the dual measure associated with the process D with respect to $\mathbb{Q},$ where

$$\frac{d\widehat{\mathbb{Q}}}{d\mathbb{Q}}|_{\mathcal{F}_t} = e^{rt} D_t, \qquad t \in [0, T]$$

Thorsten Rheinländer (Vienna University of THedging Barrier Options via a General Self-Di

The general self-duality holds in our model: for all positive Borel functions g, stopping times τ ∈ [0, T],

$$E^{\mathbb{P}}_{\tau}\left[g\left(rac{S_{\mathcal{T}}}{S_{\tau}}
ight)
ight]=E^{\widehat{\mathbb{Q}}}_{\tau}\left[g\left(rac{D_{\tau}}{D_{\mathcal{T}}}
ight)
ight],$$

as well as the dual general self-duality:

$$E^{\mathbb{Q}}_{\tau}\left[g\left(rac{D_{\mathcal{T}}}{D_{\tau}}
ight)
ight]=E^{\widehat{\mathbb{P}}}_{\tau}\left[g\left(rac{S_{\tau}}{S_{\mathcal{T}}}
ight)
ight].$$

In the classical self-dual case, self-duality and dual self-duality coincide.

• The fair price of the same down-and-in call as before at the barrier is

$$E^{\mathbb{P}}_{\tau}\left[e^{-r(\tau-\tau)}\left(S_{T}-\mathcal{K}\right)^{+}
ight].$$

This expectation is difficult to evaluate in our context. By the general self-duality, this equals (τ < T)

$$E_{\tau}^{\mathbb{Q}}\left[\Gamma_{\tau}^{\mathbb{Q}}\right] = K E_{\tau}^{\mathbb{Q}}\left[e^{-r(T-\tau)}\left(\frac{B}{K}-\frac{D_{T}}{D_{\tau}}\right)^{+}\right]$$

• In contrast to $S_{\tau} = B$, here D_{τ} is a random variable. Moreover, D is not a traded instrument, however can be explicitly written as product of S and some functional of the volatility.

Replicating hedging strategy

Recall that

$$\Gamma^{\mathbb{Q}}_{\tau} = K \left(\frac{B}{K} - \frac{D_T}{D_{\tau}}
ight)^+.$$

• We write

$$u(x) = K\left(\frac{B}{K} - x\right)^+.$$

By Ito's formula,

$$\begin{split} u\left(\frac{D_{T}}{D_{\tau}}\right) &= u(1) + \int_{\tau}^{T} \frac{\partial u}{\partial x} \cdot \frac{D_{t}}{S_{t}} \, dS_{t} - 2\rho \int_{\tau}^{T} \frac{\partial u}{\partial x} D_{t} \, \frac{\sigma(V_{t})}{\gamma(V_{t})} dV_{t} \\ &- 2r \int_{\tau}^{T} \frac{\partial u}{\partial x} D_{t} \, dt + \int_{\tau}^{T} \left(\frac{\partial u}{\partial x} D_{t} \left(\rho^{2} + 2\rho \frac{\mu(V_{t})}{\sigma(V_{t})\gamma(V_{t})}\right) \right. \\ &\left. + \frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}} D_{t}^{2} \left(\frac{1}{S_{t}^{2}} + 4\rho^{2} - \frac{4\rho^{2}}{S_{t}}\right)\right) \sigma^{2}(V_{t}) \, dt. \end{split}$$

15 / 20

Finally, substitute

$$D_t = S_t \exp\left(-2rt - 2\rho \int_0^t \frac{\sigma(V_s)}{\gamma(V_s)} dV_s - \int_0^t \frac{\sigma(V_s)\mu(V_s)}{\gamma(V_s)} ds\right) \\ \times \exp\left(\rho^2 \int_0^t \sigma^2(V_s) ds\right).$$

- This gives a replicating hedge by dynamically trading in stock, realized variance and bond.
- By using Malliavin calculus, we obtain pricing formulae involving higher greeks.
- Moreover, we give a second order approximation to the price of the barrier option.

• $v_t^2 = \frac{1}{T-t} \int_t^T E^{\mathbb{Q}} \left(\sigma_s^2 | \mathcal{F}_t \right) ds$. That is, v_t^2 denotes the squared time future average volatility.

•
$$N_t = \int_0^T E^{\mathbb{Q}} \left(\left. \sigma_s^2 \right| \mathcal{F}_t
ight) \, ds$$

• For all t < T, V_t denotes the value at time t of a put option with payoff

$$G(t, D) = K \left(rac{B}{K} - rac{D_T}{D_t}
ight)^+$$

Approximation of barrier option price

۲

$$V_{t} \approx P_{BS}(t, X_{t}, v_{t}) + \frac{\rho}{2} H(t, X_{t}, v_{t}) E^{\mathbb{Q}} \left[\int_{t}^{T} e^{-r(s-t)} \sigma_{s} d \langle N, W \rangle_{s} \middle| \mathcal{F}_{t} \right] + \frac{\kappa}{8} J(t, X_{t}, v_{t}) E^{\mathbb{Q}} \left[\int_{t}^{T} e^{-r(s-t)} d \langle N, N \rangle_{s} \middle| \mathcal{F}_{t} \right].$$
(2)

Note that, in the above equation, $H(t, X_t, v_t)$ and $J(t, X_t, v_t)$ are model-independent and can be written explicitly as:

$$H(t, X_t, v_t) = \frac{e^{X_t}}{v_t^2 (T - t) \sqrt{2\pi}} \exp\left(-\frac{d_+^2}{2}\right) (-d_-)$$

and

$$J(t, X_t, v_t) = \frac{e^{X_t}}{(v_t \sqrt{T-t})^3 \sqrt{2\pi}} \exp\left(-\frac{d_+^2}{2}\right) (d_+d_--1).$$

• **Conclusion**: for symmetric continuous SV models, the classical method breaks down in the case there is a significant skewness. One has to hedge also with volatility related instruments.

- Carr, P., Chou, A. (1997) Breaking barriers, Risk 10, pp. 139–145
- Carr, P., Lee, R. (2009) Put-call symmetry: extensions and applications. *Mathematical Finance* **19**, 523–560
- Eberlein, E., Papapantoleon, A., Shiryaev, A.N. (2008). On the duality principle in option pricing: semimartingale setting. *Finance and Stochastics* **12**, 265-292
- Molchanov, I., Schmutz, M. (2010) Multivariate extension of put-call symmetry. *SIAM Journal of Financial Mathematics* **1** 398–426
- Vostrikova, L., Yor, M. (2000) Some invariance properties of Ocone's martingales. *Séminaire de Probabilités* **XXXIV**, 417–43
- Xiao, Y. (2009) R-minimizing hedging in an incomplete market: Malliavin calculus approach. Available at SSRN