Hedging under multiple risk constraints

Ying Jiao

ISFA, Université Claude Bernard – Lyon I

Joint work with Olivier Klopfenstein (EDF) and Peter Tankov (Paris 7)

Advanced Methods in Mathematical Finance Angers, 4 September 2013

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Introduction

- \triangleright Practical motivation: required by law, EDF should take charge of decommissionning of the nuclear power plants, as well as the treatment and storage of the radioactive waste.
- \triangleright Management of an asset portfolio dedicated to cover the long-term future costs for the nuclear plants "with a high degree of confidence" - probabilistic risk constraints
- \triangleright Related subjects: Asset Liability Management (ALM) problem for pension funds, banks and insurance companies; longevity risk; Basel or Solvency regulatory capital requirement etc.

4 D X 4 P X 3 X 4 B X 3 B X 9 Q Q

Literature

- In the literature, the continuous-time setting is mostly considered, with a single liability. We mention for example :
	- \blacktriangleright Föllmer-Leukert (1999, 2000): quantile hedging
	- \blacktriangleright El Karoui-Jeanblanc-Lacoste (2001): portfolio with American guarantee
	- \triangleright Boyle-Tian (2007): desired benchmark strategy problem
	- ▶ Bouchard-Elie-Touzi (2009), Bouchard-Moreau-Nutz (2012): stochastic target problem

4 D X 4 P X 3 X 4 B X 3 B X 9 Q Q

In our work, we consider a finite set of future liabilities, with risk constraints imposed at each payment date.

Outline

- \triangleright Formulation of ALM problem with random liabilities.
- \triangleright Three types of probabilistic risk constraints :
	- \blacktriangleright European-style constraint
	- \blacktriangleright Time-consistent constraint
	- \blacktriangleright Lookback constraint
- \triangleright Solution of these problems by a dynamic programming approach
	- \triangleright determine the relationship between the risk constraints at different dates
	- \blacktriangleright find the least expensive portfolio which outperforms the stochastic benchmark under different risk constraints.

KORKA REPARATION ADD

 \blacktriangleright Examples and numerical illustrations

A discrete-time setting

- \triangleright Market $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}$
- Payment dates : $0 = t_0 < t_1 < \cdots < t_n < T$
- In Let $\mathcal{F}_k := \mathcal{F}_{t_k}$
- **F** Future liable payments : P_1, \cdots, P_n at t_1, \cdots, t_n , which are $\mathcal{F}_1, \cdots, \mathcal{F}_n$ measurable random variables.
- Portfolio held by an agent with value \hat{V} for the payment :

$$
\widetilde{V}_{t_i}=\widetilde{V}_{t_i-}-P_i
$$

 \triangleright Let $\mathbb Q$ be an equivalent probability measure such that all admissible self-financing portfolios are Q-supermartingales, and for any Q-supermartingale $(M_t)_{0 \leq t \leq T}$, there exists an admissible portfolio $(V_t)_{0 \leq t \leq T}$, which satisfies $V_t = M_t$ for all $t \in [0, T]$.

The associated self-financing portfolio is :

$$
V_t = \widetilde{V}_t + \sum_{i \geq 1, t_i < t} P_i
$$

The benchmark process is :

$$
S_t = \sum_{i \geq 1, t_i < t} P_i
$$

The agent has certain risk tolerance and searches for

- \triangleright the cheapest portfolio V which outperforms the benchmark process S
- \triangleright the Q-supermartingale M with the smallest initial value which dominates the benchmark S at all dates t_1, \dots, t_n under some risk constraint.

Risk constraints

Let $\ell : \mathbb{R} \to \mathbb{R}$ be a loss function which is convex, decreasing and bounded from below.

Example :

-
$$
\ell(x) = (-x)^+
$$

- $\ell(x) = e^{-px} - 1, p > 0$

European-style constraint

Find the minimal value of M_0 s.t. there exists a $\mathbb Q$ -supermartingale $(M_k)_{k=0}^n$ with

$$
\mathbb{E}^{\mathbb{P}}[\ell(M_k-S_k)] \leq \alpha_k \text{ for } k=1,\ldots,n. \tag{1}
$$

A DIA K PIA K E A LE A DIA K E A VION

We denote the set of all such Q-supermartingales by M_{EU} .

American-style constraint

Time-consistent constraint

Find the minimal value of M_0 s.t. there exists a $\mathbb Q$ -supermartingale $(M_k)_{k=0}^n$ with

 $\mathbb{E}^{\mathbb{P}}[\ell(M_k-S_k) | \mathcal{F}_{k-1}] \leq \alpha_k$ for $k=1,\ldots,n.$ (2)

We denote the set of all such \mathbb{O} -supermartingales by \mathcal{M}_{TC} .

The above constraint can be viewed as an American-style one:

$$
\blacktriangleright \ \mathsf{let}\ X_k = \sum_{i=1}^k I(M_i - S_i) - \alpha_i
$$

- \triangleright condition [\(2\)](#page-7-0) is equivalent to any of the following conditions :
	- \blacktriangleright $(X_k)_{k=0}^n$ is a $\mathbb P$ -supermartingale
	- For any F-stopping time τ taking values in $\{0, \dots, n\}$,

 $\mathbb{E}^{\mathbb{P}}[\ell(M_{\tau+1}-\mathcal{S}_{\tau+1})-\alpha_{\tau+1}]\leq 0$

A DIA K PIA A BIA A BIA A Q A CA

Lookback-style constraint

Maximum constraint

Find the minimal value of M_0 s.t. there exists a $\mathbb Q$ -supermartingale $(M_k)_{k=0}^n$ with

$$
\mathbb{E}^{\mathbb{P}}[\max_{k=1,\ldots,n}\{\ell(M_k-S_k)-\alpha_k\}]\leq 0. \tag{3}
$$

We denote the set of such Q-supermartingales by M_{LR} .

So for a given threshold vector $(\alpha_1, \dots, \alpha_n)$, the following relation holds:

 $M_{IR} \subset M_{TC} \subset M_{Ell}$

 \triangleright The initial capital requirement for the three constraints satisfy

 $M_0^{EU} \leq M_0^{TC} \leq M_0^{LB}$

A DIA K PIA A BIA A BIA A Q A CA

Solving the three problems

- \triangleright We apply a dynamic programming approach in each case.
- \triangleright The dynamic programming structure depends on the nature of the constraint.

- \triangleright At each time step, the constraint need to be verified for succeeding dates.
- \triangleright We obtain recursive formulas for the three cases.

The time-consistent case

The (TC) problem :

Recall that \mathcal{M}_{TC} denotes the set of all Q-supermartingales $(M_k)_{k=0}^n$ such that

$$
\mathbb{E}^{\mathbb{P}}[\ell(M_k-S_k) | \mathcal{F}_{k-1}] \leq \alpha_k \text{ for } k=1,\ldots,n.
$$

Dynamic version :

For any $k \in \{0, \ldots, n\}$, let $\mathcal{M}_{TC,k}$ be the set of the $\mathbb Q$ -supermartingales $(M_t)_{t=k}^n$ such that

$$
\mathbb{E}^{\mathbb{P}}[\ell(M_t-S_t)|\mathcal{F}_{t-1}]\leq \alpha_t \text{ for } t=k+1,\ldots,n
$$

Value process for the (TC) case

Define the value process in a backward manner :

$$
V_n=-\infty
$$

• for any
$$
k < n
$$
,

 $V_k = \underset{M \in \mathcal{F}_{k+1}}{\text{ess inf}}$ $\{\mathbb{E}^{\mathbb{Q}}[M|\mathcal{F}_{k}] : M \geq V_{k+1} \text{ and } \mathbb{E}^{\mathbb{P}}[\ell(M-S_{k+1})|\mathcal{F}_{k}] \leq \alpha_{k+1}\}$

Proposition

 \blacktriangleright let

$$
V_k = \underset{(M_t)_{t=k}^n \in \mathcal{M}_{TC,k}}{\text{ess inf}} M_k, \quad k = 0, \ldots, n-1.
$$

Idea of the proof

Denote by \hat{V}_k the essential infimum of M_k with $(M_t)_{t=n}^k \in \mathcal{M}_{TC,k}$.

- \blacktriangleright The proof is by backward induction on k : assume $V_{k+1} = V_{k+1}.$
- \blacktriangleright " $V_k \leq V_k$ " : If $(M_t)_{t=k}^n \in \mathcal{M}_{\mathcal{TC},k}$, then $(M_t)_{t=k+1}^n \in \mathcal{M}_{\mathcal{TC}, k+1}$. By supermartingale property, we have $V_k \leq \mathbb{E}^{\mathbb{Q}}[M_{k+1}|\mathcal{F}_k] \leq M_k$, so $V_k \leq \widehat{V}_k$.
- ► " $V_k \geq V_k$ ": The opposite inequality is more delicate and relies on the following fact: if $(M_t)_{t=k+1}^n$ and $(M_t')_{t=k+1}^n$ are supermartingales in $\mathcal{M}_{TC,k+1}$, then there exists $(M''_t)_{t=k+1}^n \in \mathcal{M}_{TC,k+1}$ such that $M''_{k+1} = \min(M_{k+1}, M'_{k+1})$. Thus we can realize the essential infimum defining V_{k+1} as the limit of a decreasing sequence.

A more explicit result

Let ℓ be strictly convex, strictly decreasing and of class $\mathcal{C}^1.$ Assume $\alpha_k > \lim_{x \to +\infty} \ell(x)$ for all k and that the derivative $\ell'(x)$ satisfies Inada's conditions $\lim_{x\to -\infty} \ell'(x) = -\infty$ and $\lim_{x\to+\infty} \ell'(x) = 0$. Then

 $V_{n-1} = \mathbb{E}^{\mathbb{Q}} [S_n + I(\lambda_{n-1} Z_n/Z_{n-1}) | \mathcal{F}_{n-1}]$

where I is the inverse of ℓ' and $\lambda_{n-1} \in \mathcal{F}_{n-1}$ is the solution of

$$
\mathbb{E}^{\mathbb{P}}[\ell(\mathcal{U}(\lambda_{n-1}Z_n/Z_{n-1}))|\mathcal{F}_{n-1}]=\alpha_n,
$$

and Z is the Radon-Nikodym derivative of $\mathbb Q$ w.r.t. $\mathbb P$. For $k < n$,

$$
V_{k-1} = \mathbb{E}^{\mathbb{Q}}[V_k|\mathcal{F}_{k-1}] \\
+ \mathbb{E}^{\mathbb{Q}}\left[\left\{S_k - V_k + I(\lambda_{k-1}Z_k/Z_{k-1})\right\}^+\Big|\mathcal{F}_{k-1}\right] \mathbf{1}_{\mathbb{E}^{\mathbb{P}}[I(V_k-S_k)|\mathcal{F}_{k-1}] > \alpha_k},
$$

where $\lambda_{k-1} \in \mathcal{F}_{k-1}$ is the solution of

$$
\mathbb{E}^{\mathbb{P}}\left[\ell\left(I(\lambda_{k-1}Z_k/Z_{k-1})\vee(\widehat{V}_k-S_k)\right)\bigg|\mathcal{F}_{k-1}\right]=\alpha_k.
$$

The lookback-style case

The (LB) problem :

Recall that M_{IB} denotes the set of all Q-supermartingales $(M_k)_{k=0}^n$ such that

$$
\mathbb{E}^{\mathbb{P}}[\max_{k=1,\ldots,n}\{\ell(M_k-S_k)-\alpha_k\}]\leq 0.
$$

In the dynamic programming of this problem, the maximum should be taken into account in the value process.

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Value process of the (LB) problem

For any $k = 0, \dots, n-1$, let $V_k(Y_k, z)$ be the essential infimum of $M_k \in \mathcal{F}_k$ such that there exists a $\mathbb Q$ -supermartingale $\left(M_t \right)_{t=k}^n$ and a $\mathbb P$ -supermartingale $\left(Y_t \right)_{t=k}^n$ verifying

$$
\max\left\{z,\max_{t\in\{k+1,\ldots,n\}}\left\{\ell(M_t-S_t)-\alpha_t\right\}\right\}\leq Y_n.
$$

Proposition

$$
V_0(0,-\infty)=\inf_{(M_k)_{k=0}^n\in\mathcal{M}_{LB}}M_0.
$$

Recursive formula for the (LB) problem

By convention, we define

$$
V_n(y,z) = (+\infty) \mathbf{1}_{\{z > y\}} + (-\infty) \mathbf{1}_{\{z \le y\}}
$$

Proposition

 $V_k(Y_k, z)$ equals the essential infimum of $\mathbb{E}^{\mathbb{Q}}[M|\mathcal{F}_k]$ where $M \in \mathcal{F}_{k+1}$ such that there exists $Y_{k+1} \in \mathcal{F}_{k+1}$ satisfying

$$
\begin{cases} \mathbb{E}^{\mathbb{P}}[Y_{k+1}|\mathcal{F}_k] = Y_k, \\ M \geq V_{k+1}(Y_{k+1}, \max(z, \ell(M-S_{k+1}) - \alpha_{k+1})). \end{cases}
$$

A DIA K PIA K E A LE A DIA K E A VION

Solving the European-style case

The (EU) problem :

 \mathcal{M}_{EU} denotes the set of all Q-supermartingales $(\mathcal{M}_k)_{k=0}^n$ such that

$$
\mathbb{E}^{\mathbb{P}}[\ell(M_k-S_k)] \leq \alpha_k \text{ for } k=1,\ldots,n.
$$

In Let V_0 be the infimum value of M_0 such that there exist a Q-supermatingale $(M_t)_{t=0}^n$ and a family of ${\mathbb P}$ -supermartingales $(\gamma_t^k)_{t=0}^k$, $k=1,\ldots,n$, satisfying

$$
Y_0^k = \alpha_k \text{ and } \ell(M_k - S_k) \le Y_k^k
$$

Proposition

$$
V_0=\inf_{(M_k)_{k=0}^n\in\mathcal{M}_{EU}}M_0.
$$

Dynamic version of the (EU) problem

For any $k = 0, \ldots, n-1$ and a family of \mathcal{F}_k -measurable random variables Y^{k+1}, \ldots, Y^n , let $V_k(Y^{k+1}, \cdots, Y^n)$ be the essential infimum of all $M_k \in \mathcal{F}_k$ such that there exists a $\mathbb Q$ -supermartingale $(M_t)_{t=k}^n$ and

$$
\mathbb{E}^{\mathbb{P}}[\ell(M_t-S_t)|\mathcal{F}_k] \leq \mathsf{Y}^t, \quad t=k+1,\ldots,n.
$$

► By convention, $V_n = -\infty$.

Proposition

 $V_k(Y^{k+1}, \ldots, Y^n)$ equals the essential infimum of all $\mathbb{E}^{\mathbb{Q}}[M|\mathcal{F}_k]$, $M \in \mathcal{F}_{k+1}$ such that there exist a family of P-supermartingales $(Y_t^{k+1})_{t=k}^{k+1}$ $\frac{k+1}{t=k}, \cdots, (\varUpsilon^n_t)_{t=k}^n$ which satisfy :

$$
\begin{cases}\nY_k^t = Y^t \text{ for } t = k+1, \dots, n, \\
\ell(M - S_{k+1}) \leq Y_{k+1}^{k+1}, \\
M \geq V_{k+1}(Y_{k+1}^{k+2}, \dots, Y_{k+1}^n).\n\end{cases}
$$

KORKAR KERKER EL VOLO

Corollary

 $V_k(\alpha_{k+1},\ldots,\alpha_n)$ equals the essential infimum of all $\mathbb{E}^{\mathbb{Q}}[M|\mathcal{F}_k]$, $M \in \mathcal{F}_{k+1}$ such that there exist a family of \mathcal{F}_{k+1} -measurable random variables Y^{k+2},\cdots, Y^n which satisfy :

$$
\begin{cases} \mathbb{E}^{\mathbb{P}}[Y^t|\mathcal{F}_k] = \alpha_t \text{ for } t = k+2,\cdots,n, \\ \mathbb{E}^{\mathbb{P}}[\ell(M-S_{k+1})|\mathcal{F}_k] \leq \alpha_{k+1}, \\ M \geq V_{k+1}(Y^{k+2},\cdots,Y^n). \end{cases}
$$

When $n=2$

$$
V_1(\alpha_2) = \underset{M \in \mathcal{F}_2}{\text{ess inf}} \left\{ \mathbb{E}^{\mathbb{Q}}[M|\mathcal{F}_1] \text{ s.t. } \mathbb{E}^{\mathbb{P}}[\ell(M - S_2)|\mathcal{F}_1] \le \alpha_2 \right\}
$$

=
$$
\mathbb{E}^{\mathbb{Q}}[S_2|\mathcal{F}_1] + \underset{X \in \mathcal{F}_2}{\text{ess inf}} \left\{ \mathbb{E}^{\mathbb{Q}}[\ell^{-1}(X)|\mathcal{F}_1] \text{ s.t. } \mathbb{E}^{\mathbb{P}}[X|\mathcal{F}_1] = \alpha_2 \right\}
$$

Solution for the European case: $n = 2$

- **In** Suppose that the function ℓ is strictly convex, strictly decreasing and of class C^1
- \blacktriangleright Let $I=(\ell')^{-1}$ and $c(\alpha_2)$ be the \mathcal{F}_1 -measurable r.v. such that $\mathbb{E}^{\mathbb{P}}[\ell(I(c(\alpha_2)Z))|\mathcal{F}_1]=\alpha_2.$
- ► Then the essential infimum of $\mathbb{E}^{\mathbb{Q}}[\ell^{-1}(X)|\mathcal{F}_1]$ is attained by $X = \ell(I(c(\alpha_2)Z))$ where Z is the Radon-Nikodym derivative of $\mathbb Q$ w.r.t. $\mathbb P$ on \mathcal{F}_2 .

 \blacktriangleright Then

$$
V_1(\alpha_2) = \mathbb{E}^{\mathbb{Q}}[S_2|\mathcal{F}_1] + \mathbb{E}^{\mathbb{Q}}[I(c(\alpha_2)Z)|\mathcal{F}_1];
$$

 $V_0(\alpha_1, \alpha_2) = \inf_{M \in \mathcal{F}_1} \{ \mathbb{E}^{\mathbb{Q}}[M] : \mathbb{E}^{\mathbb{P}}[l(M-S_1)] \leq \alpha_1, \, \mathbb{E}^{\mathbb{P}}[V_1^{-1}(M)] \leq \alpha_2 \}.$

Example

 $\ell(x) = e^{-px} - 1$ where $p > 0$. Then $I(x) = -\frac{1}{p}$ $\frac{1}{p}\ln(-\frac{x}{p})$ $\frac{x}{p})$ and

$$
c(\alpha_2) = -\frac{p(1+\alpha_2)}{\mathbb{E}^{\mathbb{P}}[Z|\mathcal{F}_1]}
$$

The risk-neutral case $\mathbb{P} = \mathbb{Q}$

 \blacktriangleright

For the three types of constraint:

$$
V_1(\alpha_2) = \mathbb{E}[S_2|\mathcal{F}_1] + \ell^{-1}(\alpha_2)
$$

For the minimal initial value at $t = 0$:

$$
V_0^{EU} = \inf_{M \in \mathcal{F}_1} \left\{ \mathbb{E}[M] : \mathbb{E}[\ell(M - S_1)] \leq \alpha_1, \mathbb{E}[\ell(M - \mathbb{E}[S_2 | \mathcal{F}_1])] \leq \alpha_2 \right\}
$$

\n
$$
V_0^{TC} = \inf_{M \in \mathcal{F}_1} \left\{ \mathbb{E}[M] : \mathbb{E}[\ell(M - S_1)] \leq \alpha_1, \ell(M - \mathbb{E}[S_2 | \mathcal{F}_1]) \leq \alpha_2 \right\}
$$

\n
$$
V_0^{LB} = \inf_{M \in \mathcal{F}_1} \left\{ \mathbb{E}[M] : \mathbb{E}[\max{\ell(M - S_1) - \alpha_1, \ell(M - \mathbb{E}[S_2 | \mathcal{F}_1]) - \alpha_2}] \right\} \leq 0 \right\}
$$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Example with $\ell(x) = (-x)^+$

A technical lemma Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $X, Y \in \mathcal{F}$ and $\alpha, \beta \geq 0$. Then,

$$
V_0 = \inf_{M \in \mathcal{F}} \{ \mathbb{E}[M] : \mathbb{E}[(X - M)^+] \leq \alpha, \mathbb{E}[(Y - M)^+] \leq \beta \}
$$

= max{ $\mathbb{E}[X - \alpha], \mathbb{E}[Y - \beta], \mathbb{E}[X \vee Y - \alpha - \beta] \}.$

and

$$
V_0' = \inf_{M \in \mathcal{F}} \{ \mathbb{E}[M] : \mathbb{E}[\max((X - M)^+ - \alpha, (Y - M)^+ - \beta)] \le 0 \}
$$

= $\mathbb{E}[(X - \alpha) \vee (Y - \beta)].$

A DIA K PIA K E A LE A DIA K E A VION

Numerical illustration : cost of hedging two objectives

 $\ell(x)=(-x)_+$ and $\mathbb{P}=\mathbb{Q}.$ The model $:\ S_1=S_0e^{\sigma Z_1-\frac{\sigma^2}{2}}$ and $S_2=S_0e^{\sigma Z_2-\frac{\sigma^2}{2}}$ where $S_0 = 100$, $\sigma = 0.2$ and $Z_1, Z_2 \sim N(0, 1)$ with correlation $\rho = 50\%$. The first threshold $\alpha_1 = 5$.

The cost of hedging both objectives in an almost sure way is equal to 107.966.

 4 ロ) 4 何) 4 ヨ) 4 コ) 一番 2990 Explicit example for multi-objectives

 \triangleright For arbitrary *n*, the explicit solution can only be obtained in some particular cases.

Example
\nLet
$$
\ell(x) = (-x)^{+}
$$
 and $\mathbb{P} = \mathbb{Q}$. Then,
\n
$$
M_0^{EU} = \inf_{M \in \mathcal{F}_n} \{ \mathbb{E}[M] : \mathbb{E}[(S_k - M)^{+}] \leq \alpha_k, k = 1, ..., n \}
$$

It in addition $(S_t)_{0 \leq t \leq n}$ is increasing, then

$$
M_0^{EU} = \max_{k \in \{1,\dots,n\}} \{ \mathbb{E}[S_k] - \alpha_k \}
$$

Thanks for your attention !