Advanced methods in mathematical finance September 3-6, 2013

Resolving Stochastic PDEs with Backward Doubly Stochastic Differential Equations

Achref BACHOUCH (University of Maine)

Joint work with

M.Anis BEN LASMER (ENIT,Tunisia) Anis MATOUSSI (University of Maine) Mohamed MNIF (ENIT,Tunisia)

(□) (母)

4 Numerical scheme for F-BDSDEs

- 2 Rate of convergence for the BDSDE
- ³ Numercical scheme for the weak solution of the SPDE
- **4** Implementation and Numerical tests.

イロト イ伊 ト イヨ ト イヨ

- **4** Numerical scheme for F-BDSDEs
- 2 Rate of convergence for the BDSDE
- ³ Numercical scheme for the weak solution of the SPDE
- **4** Implementation and Numerical tests.

K ロ ▶ K 何 ▶ K ヨ ▶

- **4** Numerical scheme for F-BDSDEs
- 2 Rate of convergence for the BDSDE
- **3** Numercical scheme for the weak solution of the SPDE
- **4** Implementation and Numerical tests.

K ロ ▶ K 何 ▶ K ヨ ▶

- **4** Numerical scheme for F-BDSDEs
- 2 Rate of convergence for the BDSDE
- **3** Numercical scheme for the weak solution of the SPDE
- ⁴ Implementation and Numerical tests.

K ロ ▶ K 何 ▶ K ヨ ▶

A quasilinear Stochastic PDE

$$
u(t,x) = \phi(x) + \int_t^T [\mathcal{L}u(s,x) + f(s,x,u(s,x), \nabla(u\sigma)(s,x))]ds
$$

+
$$
\int_t^T g(s,x,u(s,x), \nabla(u\sigma)(s,x))d\overleftarrow{B}_s, 0 \le t \le T.
$$

where $u:[0,T]\times\mathbb{R}^d\longrightarrow\mathbb{R}^K$ and $\mathcal L$ is the second order differential operator given by

$$
\mathcal{L}:=\frac{1}{2}\sum_{i,j=1}^d(\sigma\sigma^*)_{i,j}\frac{\partial^2}{\partial x^i\partial x^j}+\sum_{i=1}^db_i\frac{\partial}{\partial x^i}\quad,\quad D_\sigma u:=\nabla u\sigma
$$

 $(B_t)_{0 \leq t \leq T}$ is a standard Brownian motion.

イロト イ伊 ト イヨ ト イヨ

logo.eps

SPDEs with BDSDEs

Let $(X_s^{t,x})_{t\leq s\leq T}$ be the solution of the SDE :

$$
X_s^{t,x} = x + \int_t^s b(X_r^{t,x}) dr + \int_t^s \sigma(X_r^{t,x}) dW_r, \quad t \le s \le T
$$

Assuming that this SDE has a solution, the couple $(Y_s^{t,x}, Z_s^{t,x})_{t\leq s\leq T},$ where $Y_{s}^{t,x} = u(s,X_{s}^{t,x})$ and $Z_{s}^{t,x} = (\nabla u \sigma)(s,X_{s}^{t,x})$ verify the <code>BDSDE</code> :

$$
Y_s = \phi(X_T^{t,x}) + \int_s^T f(X_r^{t,x}, Y_r^{t,x}, Z_r^{t,x}) ds + \int_s^T g(X_r^{t,x}, Y_r^{t,x}, Z_r^{t,x}) d\overline{B_r} - \int_s^T Z_r^{t,x} dW_r, \quad t \le s \le T.
$$

∢ロト ∢母ト ∢ヨト ∢ヨト

Some existing numerical methods to solve SPDEs

Mainly analytic methods, based on time-space discretization :

- Euler finite difference schemes (Gyongy I. and Nualart D., 1995. Gyongy I., 1995).
- Finite elements schemes (Walsh J.B., 2005).
- Spectral Galerkin approximation (Jentzen A and Kloeden P.,2010).

An other alternative : Probablistic approach, using Monte Carlo method

When $q = 0$: solve a standard BSDE

- Bally V. (1997).
- Zhang J. (2004).
- Bouchard B.and Touzi N. (2004).
- Gobet E., Lemor J. and Warin X. (2006).

When $q\neq 0$: We extend the Bouchard-Touzi-Zhang approach to this case.

- Let $(W_t)_{0\leq t\leq T}$ and $(B_t)_{0\leq t\leq T}$ be two independent standard Brownian motions, with values respectively in \mathbb{R}^d and in \mathbb{R}^l , defined on the probability space $(\Omega, \mathcal{F}, \mathcal{P})$. -N denotes the class of P-null sets of F. For each $t \in [0, T]$, $T > 0$, we define

$$
\mathcal{F} \triangleq \mathcal{F}_t^W \vee \mathcal{F}_{t,T}^B
$$

where for any process $\{\eta_t\},\$ $\mathcal{F}_{s,t}^{\eta} = \sigma \{ \eta_r - \eta_s, s \leq r \leq t \} \vee \mathcal{N}, \mathcal{F}_t^{\eta} = \mathcal{F}_{0,t}^{\eta}.$

Let $t \leq s_1 \leq s_2$. For some real number $p \geq 2$ and for any $n \in \mathbb{N}$,

Let $\mathbb{H}^p_n([s_1,s_2])$ denote the set of (classes of $dP \times dt$ a.e. equal) n dimensional progressively measurable processes $\{\psi_u; u \in [s_1, s_2]\}$ satisfying : (i) $||\psi||^p_{\mathbb{H}^p_n([s_1,s_2])} := E[\int_{s_1}^{s_2} |\psi_u|^p du] < \infty$, (ii) ψ_u is \mathcal{F}^t_u -measurable, for a.e. $u \in [s_1, s_2]$.

We denote similarly by $\mathbb{S}^p_n([s_1,s_2])$ the set of continuous n dimensional processes satisfying : (i) $||\psi||_{\mathbb{S}_{n}^{p}([s_{1}, s_{2}])}^{p} := E[\sup_{s_{1} \le u \le s_{2}} |\psi_{u}|^{p}] < \infty$, (ii) ψ_u is \mathcal{F}^t_u -measurable, for any $u \in [s_1,s_2]$.

∢ロト ∢母ト ∢ヨト ∢ヨト

(H1)
$$
|b(x) - b(x')| + ||\sigma(x) - \sigma(x')|| \le C|x - x'|, \forall x, x' \in \mathbb{R}^d
$$
.
\n(H2) there exist two constants $K > 0$ and $0 \le \alpha < 1$ such that for any $(t_1, x_1, y_1, z_1), (t_2, x_2, y_2, z_2) \in [0, T] \times \mathbb{R}^d \times \mathbb{R}^k \times \mathbb{R}^{k \times d}$,
\n(i) $|f(t_1, x_1, y_1, z_1) - f(t_2, x_2, y_2, z_2)| \le K(\sqrt{|t_1 - t_2|} + |x_1 - x_2| + |y_1 - y_2| + ||z_1 - z_2||)$,
\n(ii) $||g(t_1, x_1, y_1, z_1) - g(t_2, x_2, y_2, z_2)||^2 \le K(|t_1 - t_2| + |x_1 - x_2|^2 + |y_1 - y_2|^2) + \alpha^2 ||z_1 - z_2||^2$,
\n(iii) $|\Phi(x_1) - \Phi(x_2)| \le K|x_1 - x_2|$,
\n(iv) $\sup_{0 \le t \le T} |f(t, 0, 0, 0)| + ||g(t, 0, 0, 0)|| \le K$.
\n $Y_t = \Phi(X_T^{t,x}) + \int_t^T f(X_s, Y_s, Z_s) ds + \int_t^T g(X_s, Y_s, Z_s) d\overline{B_s} - \int_t^T Z_s dW_s, 0 \le t \le T$.
\nA solution of this BDSDE is a pair $(Y, Z) \in S_k^2([t, T]) \times \mathbb{H}_{k \times d}^2([t, T])$ and satisfying this equation.

STEP SLP 2990

Ξ

[Numerical scheme for F-BDSDEs](#page-12-0)

[Path regularity of the process Z](#page-15-0) [Rate of convergence for the BDSDE](#page-20-0) [Numercical scheme for the weak solution of the SPDE](#page-22-0) [Implementation and numerical tests](#page-29-0)

Numerical scheme

The Forward process X : Euler scheme

 $\pi : t_0 < t_1 < ... < t_N = T$ is a partition of $[0, T]$ with mesh $|\pi| = h = \max_{1 \le n \le N} |t_n - t_{n-1}|.$ $\Delta W_n = W_{t_{n+1}} - W_{t_n}$, and $\Delta B_n = B_{t_{n+1}} - B_{t_n}$, for $n = 1, ..., N$. X^N a relative approximation of X at these discretisation times : say it is obtained throught an Euler scheme on the equation satisfied by X . As N goes to infinity, $\sup_{0\leq n\leq N}E|X_{t_n}-X_{t_n}^N|^2\rightarrow 0.$ The Euler scheme : Let $x \in \mathbb{R}^d$

$$
X_0^N = x, \; X_{t_{n+1}}^N = X_{t_{n+1}}^N + b(X_{t_n}^N)h + \Delta W_n \sigma(X_{t_n}^N).
$$

(ロ) (母) (ヨ) |

[Numerical scheme for F-BDSDEs](#page-12-0)

[Path regularity of the process Z](#page-15-0) [Rate of convergence for the BDSDE](#page-20-0) [Numercical scheme for the weak solution of the SPDE](#page-22-0) [Implementation and numerical tests](#page-29-0)

Numerical scheme

The Forward-Backward Doubly SDE

The solution (Y,Z) of the F-BDSDE is approximated by (Y^{N},Z^{N}) defined by :

$$
Y_{t_N}^N = \Phi(X_T^N),
$$

and for $0 \leq n \leq N-1$,

$$
Y_{t_n}^N = E_{t_n} [Y_{t_{n+1}}^N + h f(t_n, \theta_n^N)] + g(t_{n+1}, \Theta_{n+1}^N) \Delta B_n],
$$

$$
h Z_{t_n}^N = E_{t_n} \left[Y_{t_{n+1}}^N \Delta W_n^* + g(t_{n+1}, \Theta_{n+1}^N) \Delta B_n \Delta W_n^* \right],
$$

where

$$
\theta_n^N \ := \ (X_{t_n}^N, Y_{t_{n+1}}^N, Z_{t_n}^N), \Theta_{n+1}^N := (X_{t_{n+1}}^N, Y_{t_{n+1}}^N, E_{t_{n+1}}[Z_{t_n}^N]), \forall n = 0, ..., N-1.
$$

 $*$ denotes the transposition operator and E_{t_n} denotes the conditional expectation over the σ -algebra F_{t_n} .

logo.eps

[Numerical scheme for F-BDSDEs](#page-12-0)

[Path regularity of the process Z](#page-15-0) [Rate of convergence for the BDSDE](#page-20-0) [Numercical scheme for the weak solution of the SPDE](#page-22-0) [Implementation and numerical tests](#page-29-0)

Numerical scheme

continuous-time approximation of the FBDSDE

We define also for all $n=0,..,N-1,$ $(Y^N,Z^N)_{t_n\leq s < t_{n+1}}$ as the solution of the following BDSDE :

$$
\begin{cases}\n dY_s^N = -f(t_n, \theta_n^N)ds - g(t_{n+1}, \Theta_{n+1}^N) \overleftarrow{dB_s} + Z_s^N dW_s, \\
 \forall n, Y_{t_n}^N \text{ is given by our numerical scheme.} \n\end{cases}
$$

K ロ ▶ K 何 ▶ K ヨ ▶

Malliavin Calculus for the FBSDE

 F is a r.v. of the form $F = \hat{f}(W(h_1), ..., W(h_n), B(k_1), ..., B(k_p))$ with $\hat{f}\in C_b^\infty(\R^{n+p},\R)$, $h_1,...,h_n\in L^2([0,T],\R^d), k_1,...,k_p\in L^2([0,T],\R^l)$, where

$$
W(h_i) := \int_0^T h_i(s)dW_s, \quad B(k_j) := \int_0^T k_j(s)\overleftarrow{dB_s}.
$$

$$
D_s F := \sum_{i=1}^n \nabla_i \hat{f}\bigg(W(h_1), ..., W(h_n); B(k_1), ..., B(k_p)\bigg)h_i(s), 0 \le s \le T,
$$

 $(D_sF)_s$ is the Malliavin derivative of F w.r.t. W. S is the set of random variables of the above form. For such F , we define its norm as :

$$
||F||_{1,2} := \left\{ E[F^2] + E\left[\int_0^T |D_s F|^2 ds \right] \right\}^{\frac{1}{2}}.
$$

$$
\mathbb{D}^{1,2}\triangleq\overline{\mathbb{S}}^{\|\cdot\|_{1,2}}.
$$

KIMPIE

logo.eps

 QQ

Malliavin Calculus for the FBSDE

 $(H3(i))$ $\sigma_b^1(\mathbb{R}^d,\mathbb{R}^d)$ and $\sigma\in C_b^1(\mathbb{R}^d,\mathbb{R}^{d\times d})$

 $(H3(ii))$ $L^2_b(\mathbb{R}^d,\mathbb{R}^d)$ and $\sigma\in C^2_b(\mathbb{R}^d,\mathbb{R}^{d\times d})$ $(H3(iii))$ $L_b^1(\mathbb{R}^d, \mathbb{R}^k), f \in C_b^1([0, T] \times \mathbb{R}^d \times \mathbb{R}^k \times \mathbb{R}^{d \times k}, \mathbb{R}^k)$ and $\qquad \mathsf{g}\in C^1_b([0,T]\times \mathbb{R}^d\times \mathbb{R}^k \times \mathbb{R}^{d\times k},\mathbb{R}^{k\times l})$ $(H3(iv))$ $L_b^2(\mathbb{R}^d, \mathbb{R}^k), f \in C_b^2([0, T] \times \mathbb{R}^d \times \mathbb{R}^k \times \mathbb{R}^{d \times k}, \mathbb{R}^k)$ and $\mathsf{g} \in C_b^2([0,T]\times \mathbb{R}^d \times \mathbb{R}^k \times \mathbb{R}^{d\times k}, \mathbb{R}^{k\times l}).$

∢ロト ∢母ト ∢ヨト ∢ヨト

Malliavin calculus on the Forward SDE's

Under (H3(i)) and (H3(ii)), there exists $C > 0$ s.t.

$$
E\Big[\sup_{0\leq u\leq T}||D_sX_u||^p\Big] \leq C(1+|x|^p),
$$

$$
E\Big[\sup_{s\vee r\leq u\leq T}||D_sX_u - D_rX_u||^p\Big] \leq C|s-r|(1+|x|^p),
$$

$$
E\Big[\sup_{0\leq u\leq T}||D_rD_sX_u||^p\Big] \leq C(1+|x|^{2p}).
$$

 QQ

э

メロメ メ母メ メミメ メミメ

Representation results for BDSDEs

Proposition

Assume that (H1)-(H3) hold. Then : For $t \leq s \leq T$, we have

$$
D_s Y_s = Z_s,
$$

and

$$
||Z||_{\mathbb{S}^2_{k \times d}([t,T])}^2 \le C(1+|x|^2).
$$

For $l_1, l_2 \leq d$, $t \leq s \leq T$, we have

$$
D_s^{l_2} D_t^{l_1} Y_s = D_t^{l_2} Z_s^{l_1},
$$

and

$$
||D_s^{l_1}Z||_{\mathbb{S}^2_{k\times d}([t,T])}^2\leq C(1+|x|^4).
$$

logo.eps

 QQ

Þ

イロン イ母ン イヨン イヨン

Path regularity

We extend the result of Zhang J.(2004) which concerns the L^2 -regularity of the martingale integrand Z

Proposition

Assume that (H1)-(H3) hold. Then for $t \leq s \leq u \leq T$, we have

$$
E\Big[\sup_{r \in [s,u]} |Y_r - Y_s|^2\Big] \leq C(1+|x|^2)|u-s|,
$$

$$
E\Big[||Z_u - Z_s||^2\Big] \leq C(1+|x|^2)|u-s|.
$$

K ロ ▶ K 何 ▶ K ヨ ▶

Main Result

Discrete time approximation error and rate of convergence for the BDSDE

Assume that the hypothesis (H1)-(H3) hold, define the error

$$
Error_N(Y, Z) := \sup_{0 \le t \le T} E[|Y_t - Y_t^N|^2] + \sum_{n=0}^{N-1} E[\int_{t_n}^{t_{n+1}} ||Z_{t_n}^N - Z_t||^2 dt],
$$

Then there exists a positive constant C (depending on T, K, α , $|b(0)|$, $||\sigma(0)||$, $|f(t, 0, 0, 0)|$ and $||g(t, 0, 0, 0)||$ such that

 $Error_N(Y, Z) \leq Ch(1 + |x|^2).$

(ロ) (母) (ヨ) |

Main tools

Genralized Itô Lemma for BDSDEs. Define the proxy \bar{Z} on each interval $[t_n, t_{n+1})$ by

$$
\bar{Z}_{t_n} = \frac{1}{h} E_{t_n} \left[\int_{t_n}^{t_{n+1}} Z_s ds \right].
$$

Young inequality. Gronwall Lemma. Path regularity.

K ロ ▶ K 何 ▶ K ヨ ▶

后

 200

Numercical scheme for the weak solution of the SPDE

Weak solution of SPDEs

Since we work on the hole space \mathbb{R}^d , we need to introduce a weight function which is integrable and satisfies $\int_{\mathbb{R}^d} (1 + |x|^2) \rho(x) dx < \infty.$

For example,
$$
\rho(x) = e^{-\frac{x^2}{2}}
$$
 or $\rho(x) = e^{-|x|}$.
We add more integrability

$$
\begin{aligned}\n\left(\mathbf{H}_{\rho}\right)(\mathbf{i}) \qquad & \int_{\mathbb{R}^d} |\phi(x)|^2 \rho(x) dx < \infty, \\
\text{(ii)} \qquad & \int_0^T \int_{\mathbb{R}^d} |f(t, x, 0, 0)|^2 \rho(x) dx dt < \infty, \\
\text{(iii)} \qquad & \int_0^T \int_{\mathbb{R}^d} |g(t, x, 0, 0)|^2 \rho(x) dx dt < \infty.\n\end{aligned}
$$

∢ ロ ▶ .⊀ 何 ▶ .∢ 手

logo.eps

Numercical scheme for the weak solution of the SPDE

Weak solution of SPDEs

 $L^2(\mathbb{R}^d,\rho(x)dx)$ is the wighted Hilbert space, $(u, v) := \int_{\mathbb{R}^d} u(x)v(x)\rho(x)dx, ||u||_2 := (u, u)^{\frac{1}{2}}.$ $H^1_\sigma(\mathbb R^d)$ the associated wighted first order Sobolev space and its norm $||u||_{H^1_{\sigma}(\mathbb{R}^d)} = (||u||_2^2 + ||\nabla u\sigma||_2^2)^{\frac{1}{2}}.$ $\mathcal{D} := \mathcal{C}^\infty_c([0,T]) \otimes \mathcal{C}^2_c(\mathbb{R}^d)$ is the space of test functions. \mathcal{H}_T is the space of predictable processes $(u_t)_{t\geq 0}$ valued in $H^1_\sigma(\mathbb{R}^d)$ such that

$$
\|u\|_T=\Big(E\Big[\sup_{0\leq t\leq T}\|u_t\|_2^2\Big]+E\Big[\int_0^T\|\nabla u_t\sigma\|^2dt\Big]\Big)^{\frac{1}{2}}<\infty.
$$

Numercical scheme for the weak solution of the SPDE

Definition

We say that $u \in \mathcal{H}_T$ is a weak solution of the SPDE associated with the terminal condition ϕ and the coefficients (f, g) , if the following relation holds almost surely, for each $\varphi \in \mathcal{D}$

$$
\int_{t}^{T} \langle u(s,.)\rangle \partial s \varphi(s,.) \rangle ds + \int_{t}^{T} \mathcal{E}(u(s,.)\varphi(s,.)) ds + \langle u(t,.)\varphi(t,.)\rangle - \langle \phi(.)\varphi(T,.)\rangle
$$

=
$$
\int_{t}^{T} \langle f(s,.,u(s,.)\rangle \langle \nabla u\sigma)(s,.),\varphi(s,.)\rangle ds + \sum_{i=1}^{l} \int_{t}^{T} \langle g(s,,u(s),\langle \nabla u\sigma)(s,.),\varphi(s,.)\rangle d\overline{B_{s}^{i}},
$$

where

$$
\mathcal{E}(u,\varphi) = (Lu,\varphi) = \int_{\mathbb{R}^d} ((\nabla u\sigma)(\nabla \varphi \sigma) + \varphi \nabla ((\frac{1}{2}\sigma^* \nabla \sigma + b)u))(x)dx
$$

is the energy of the system associated with the SPDE.

logo.eps

 QQ

Þ

イロト イ伊 トイヨ トイヨト

Numercical scheme for the weak solution of the SPDE

Theorem

Under (H1), (H2), (H3) and (H_a), there exists a unique weak solution $u \in \mathcal{H}_T$ of the SPDE associated with the terminal condition Φ. Moreover, $u(t, x) = Y_t^{t, x}$ and $Z_t^{t, x} = \nabla u_t \sigma$, $dt \otimes dx \otimes dP$ a.e. where $(Y^{t,x}_s, Z^{t,x}_s)_{t\leq s\leq T}$ is the solution of the BDSDE.

モロメ メ母メ メミメス

Numercical scheme for the weak solution of the SPDE

Lemma

Let
$$
x \in \mathbb{R}^d
$$
 and $t, t_n \in \pi$ such that $t \le t_n$. Define

$$
u_{t_n}^N(x) := Y_{t_n}^{N, t_n, x} \text{ and } v_{t_n}^N(x) := Z_{t_n}^{N, t_n, x}.
$$

Then $u_{t_n}^N$ (resp. $v_{t_n}^N$) is $\mathcal{F}_{t_n,T}^B$ -measurable and we have

$$
u_{t_n}^N(X_{t_n}^{t,x}) = Y_{t_n}^{N,t,x} \quad (resp. \ v_{t_n}^N(X_{t_n}^{t,x}) = Z_{t_n}^{N,t,x}).
$$

イロメ イ押メ イヨメ イヨメー

Numercical scheme for the weak solution of the SPDE

We define the process (u^N_s,v^N_s) as follows :

$$
u_s^N(x) := Y_s^{N,s,x}
$$
 and $v_s^N(x) := Z_s^{N,s,x}, \forall s \in [t_n, t_{n+1}).$

Then

$$
u_s^N(X_s^{t,x}) = Y_s^{N,t,x}
$$
 and $v_s^N(X_s^{t,x}) = Z_s^{N,t,x}, \forall t \le s, t, s \in [t_n, t_{n+1}).$

We define the following error :

$$
Error_N(u, v) := \sup_{0 \le s \le T} E_B[\int_{\mathbb{R}^d} |u_s^N(x) - u(s, x)|^2 \rho(x) dx]
$$

+
$$
\sum_{n=0}^{N-1} E_B[\int_{\mathbb{R}^d} \int_{t_n}^{t_{n+1}} ||v_s^N(x) - v(s, x)||^2 ds \rho(x) dx].
$$

∢ ロ ▶ - ∢ 伊 ▶ - ∢ ∃

logo.eps

Numercical scheme for the weak solution of the SPDE

Theorem : Rate of convergence for the SPDE

Assume that $(H1), (H2), (H3)$ and (H_{ρ}) hold. Then, the error $Error_N(u, v)$ converges to 0 as $N \to \infty$ and there exists a positive constant C (depending only on T, K, α , $|b(0)|$, $||\sigma(0)||$, $|f(t, 0, 0, 0)|$ and $||g(t, 0, 0, 0)||$) such that

 $Error_N(u, v) \leq Ch.$

∢ ロ ▶ (伊) (ミ) (ミ

Notations and algorithm

For each fixed path of B , the solution of the BDSDE is approximated by (Y^N,Z^N) : For $0\leq n\leq N-1$

$$
\label{eq:1} \begin{aligned} &\forall j_1 \in \{1,..,k\},\\ &Y_{t_n,j_1}^N {=} E_{t_n} \Big[&Y_{t_{n+1},j_1}^N {+} h f_{j} (X_{t_n}^N, &Y_{t_n+1}^N, Z_{t_n}^N) {+} \sum_{j=1}^l g_{j_1,j} (X_{t_{n+1}}^N, &Y_{t_{n+1}}^N, E_{t_{n+1}}[Z_{t_n}^N]) \Delta B_{n,j} \Big],\\ &\forall j_1 \in \{1,..,k\} \text{ and } \forall j_2 \in \{1,..,d\}\\ &hZ_{t_n,j_1,j_2}^N {=} E_{t_n} \Big[&Y_{t_{n+1},j_1}^N \Delta W_{n,j_2} {+} \sum_{j=1}^l g_{j_1j} \big(X_{t_{n+1}}^N, &Y_{t_{n+1}}^N, E_{t_{n+1}}[Z_{t_n}^N]) \Delta B_{n,j} \Delta W_{n,j_2} \Big]. \end{aligned}
$$

∢ロ ▶ ∢伺 ▶ ∢∃ ▶

Notations and algorithm

Vector spaces of functions

At every t_n , we select $k(d+1)$ deterministic functions bases $(p_{i,n}(.))_{1 \leq i \leq k(d+1)}$. We look for approximations of $Y_{t_n}^N$ and $Z_{t_n}^N$ which will be denoted respectively by y_n^N and z_n^N , in the vector space spanned by the basis $(p_{j_1,n}(.))_{1\leq j_1\leq k}$ (respectively $(p_{j_1,j_2,n}(.))_{1\leq j_1\leq k,1\leq j_2\leq d}$). For example, the hypercube basis.

∢ロト ∢母ト ∢きト ∢きト

Description of the algorithm

 \rightarrow Initialization : For $n = N$, take $(y_N^{N,m}) = (\Phi(X_{t_N}^{N,m})).$

$$
\rightarrow \text{Iteration}: \text{For } n = N - 1, ..., 0:
$$

- We use I Picard iterations to obtain an approximation of Z_{t_n} :
- \cdot For $i = 0$, $\forall j_1 \in \{1,..,k\}$ and $j_2 \in \{1,..,d\}$, $\alpha_{j_1,j_2,n}^{M,0} = 0$.
- \cdot For $i=1,..,I$: We compute first $E_{t_{n+1}}[Z^N_{t_n}]$ appearing in (1) :

$$
\alpha'^{M,i-1}_{j_1,j_2,n+1} = \underset{\alpha'}{\text{arginf}} \frac{1}{M} \sum_{m=1}^M \Big| \alpha'^{M,i-1}_{j_1,j_2,n} \cdot p^m_{j_1,j_2,n} - \alpha' \cdot p^m_{j_1,j_2,n+1} \Big|^2,
$$

we set $z'^{N,M,i-1}_{n+1,j_1,j_2} (.) = (\alpha'^{M,i-1}_{j_1,j_2,n+1}.p_{j_1,j_2,n+1}(.)).$ After that,

$$
\alpha_{j_1,j_2,n}^{M,i} = \underset{\alpha}{\text{arginf}} \frac{1}{M} \sum_{m=1}^{M} \Big| y_{n+1,j_1}^{N,M}(X_{t_{n+1}}^{N,m}) \frac{\Delta W_{n,j_2}^m}{h} + \sum_{j=1}^{l} g_{j_1,j} \Big(X_{t_{n+1}}^{N,m} y_{n+1}^{N,M}(X_{t_{n+1}}^{N,m}) (\alpha_{j_1,j_2n+1}^{M,i_1-1} p_{j_1,j_2n+1}^m) \Big) \frac{\Delta B_{n,j} \Delta W_{n,j_2}^m}{h} - \alpha P_{j_1,j_2n}^m \Big|^2.
$$

つへへ

Notations and algorithm

Description of the algorithm

After that we approximate (1) by calculating $\alpha_{j_{1},n}^{M},$ for every $j_{1}\in\{1,..,k\},$ as the minimizer of :

$$
\frac{1}{M} \sum_{m=1}^{M} \left| y_{n+1,j_1}^{N,M}(X_{t_{n+1}}^{N,m}) + h f_{j_1}\left(X_{t_n}^{N,m}, y_{n+1}^{N,M}(X_{t_{n+1}}^{N,m})z_n^{N,M,I}(X_{t_n}^{N,m})\right) \right|
$$

+
$$
\sum_{j=1}^{l} g_{j_1,j}\left(X_{t_{n+1}}^{N,m}, y_{n+1}^{N,M}(X_{t_{n+1}}^{N,m})z_n^{N,M,I}(X_{t_{n+1}}^{N,m})\right)\Delta B_{n,j} - \alpha p_{j_1,k}^m \right|^2.
$$

Finally, we define $y_n^{N,M}(.)$ as :

$$
y_{n,j_1}^{N,M}(.) = (\alpha_{j_1,n}^M.p_{j_1,n}(.)), \forall j_1 \in \{1,..,k\}.
$$

∢ ロ ▶ . ∢ 何 ▶ . ∢ ヨ ▶

logo.eps

One dimensionnal case (Case when $d = k = l = 1$)

Case when f and q are linear in y and independant of z

$$
\begin{cases}\n dX_t = X_t(\mu dt + \sigma dWt), \\
 \Phi(x) = -x + K, \ f(y) = a_0y, \ g(y) = b_0y\n\end{cases}
$$

and we set $K = 115$, $r = 0.01$, $R = 0.06$, $X_0 = 100$, $\mu = 0.05$, $\sigma = 0.2$, $T = 0.25, d_1 = 60$, $d_2 = 200$, a_0 and b_0 are fixed constants. Let $Y_{explicit}$ be the solution of our BDSDE in this particular case. By an integration by parts formula we get

$$
Y_{t,explicit}^{t,x} = E[\Phi(X_T^{t,x})e^{a_0(T-t)+b_0(B_T-B_t) - \frac{1}{2}b_0^2(T-t)}/\mathcal{F}_{t,T}^B]
$$

At $t=0$, we have

$$
Y_{0,explicit}^{0,x} = E[\Phi(X_T^{0,x})e^{(a_0 - \frac{1}{2}b_0^2)T + b_0B_T}/\mathcal{F}_{0,T}^B]
$$

= $e^{(a_0 - \frac{1}{2}b_0^2)T + b_0B_T}E[\Phi(X_T^{0,x})].$

logo.eps

One dimensionnal case (Case when $d = k = l = 1$)

Case when f and q are linear in y and independant of z

In the other hand, we compute the solution $Y_{0,explicit}^{0,x}$ in this linear case by using the explicit formula of the expectation of $X^{0,x}_T$,

$$
Y_{explicit}^{0,x} = e^{(a_0 - \frac{1}{2}b_0^2)T + b_0B_T} E[\Phi(X_T^{0,x})] = e^{(a_0 - \frac{1}{2}b_0^2)T + b_0B_T}(K - xe^{\mu T})
$$

∢ ロ ▶ (何 ▶ (ヨ ▶ (

One dimensionnal case (Case when $d = k = l = 1$)

Case when f and g are linear in y and independant of z

For $a_0 = 0.5$, $b_0 = 0.5$ and $\delta = 1$

For $a_0 = 0.5$, $b_0 = 0.5$ and $\delta = 0.5$

$$
\text{N=30, } Y_{explicit}^{0,x} = 14.115 \underbrace{\begin{array}{|l|l|}\hline M&\overline{Y}_{0}^{0,x,N,M}(\sigma^{N,M})&\frac{|Y_{explicit}^{0,x}-\overline{Y}_{0}^{0,x,N,M}|}{Y_{explicit}^{0,x}}\\ \hline 100&14.245(1.045)&0.009\\ \hline 1000&14.194(0.337)&0.005\\ \hline 5000&14.235(0.129)&0.008\\ \hline \end{array}}
$$

logo.eps

 QQ

メロト メ御 トメ きょ メきょ

One dimensionnal case (Case when $d = k = l = 1$)

Comparison of numerical approximations of the solutions of the FBDSDE and the FBSDE in the general case

$$
\begin{cases}\n\Phi(x) = -x + K, \\
f(t, x, y, z) = -\theta z - ry + (y - \frac{z}{\sigma})^-(R - r) \\
g_1(t, x, y, z) = 0.1z + 0.5y + \log(x)\n\end{cases}
$$

and we set $\theta = (\mu - r)/\sigma$, $K = 115$, $X_0 = 100$, $\mu = 0.05$, $\sigma = 0.2$, $r = 0.01$, $R = 0.06, \delta1 = 1, N = 20, T = 0.25$ and we fix $d_1 = 60$ and $d_2 = 200$ and we set $\theta = (\mu - r)/\sigma$, $K_1 = 95$, $K_2 = 105$, $X_0 = 100$, $\mu = 0, 05$, $\sigma = 0, 2$, $r = 0, 01, R = 0, 06, \delta1 = 1, N = 20$, $T = 0, 25$ and we fix $d_1 = 60$ and $d_2 = 200$.

We finally note that for the contraction constant taken in the following $(\alpha = 0.1)$, our algorithm converges after at most three Picard iterations.

モロメ メ母メ メミメス

logo.eps

Comparison of numerical approximations of the solutions of the FBDSDE and the FBSDE in the general case : When $t = 0$

←ロ ▶ ← ← 冊 ▶

 200

One dimensionnal case (Case when $d = k = l = 1$)

Figure : The BDSDE's solution with respect to the number of time discretization steps is with cross markers. Confidence interval are with dotted lines[.](#page-29-0) The figure is obtained for $M = 2000$ $M = 2000$ $M = 2000$ a[nd](#page-39-0) $\delta = 1$ $\delta = 1$ $\delta = 1$.

One dimensionnal case (Case when $d = k = l = 1$)

Finally, we see on the following figure the impact of the function q on the solution; we variate N, M and d as follows : First we fix $d_1 = 40$ and Solution; we variate N , M and d as follows : First we fix $u_1 = 4$
 $d_2 = 180$. Let $j \in \mathbb{N}$, we take $\alpha_M = 3$, $\beta = 1$, $N = 2(\sqrt{2})^{(j-1)}$, $M = 2(\sqrt{2})^{\alpha} M^{(j-1)}$ and $d = 50/(\sqrt{2})^{(j-1)(\beta+1)/2}$. Then, we draw the map of each solution at $t = 0$ with respect to j.

One dimensionnal case (Case when $d = k = l = 1$)

Figure : Comparison of the BSDE's solution and the BDSDE's one : The solution of the BSDE is with circle markers, the solution of the BDSDE for $q_1(x, y, z) = 0.1z + 0.5y + log(x)$ is with star markers and the one for $g_2(y, z) = 0.1z + 0.5y$ is with cross markers. Confidence intervals are with dotted lines.

References :

- Pardoux E., Peng S. (1994) : Backward doubly stochastic differential equations and systems of quasilinear SPDE's, Probab. Theory Relat. Fields 98, 209-227.
- Bally V., Matoussi A. (1999) : Weak solutions for SPDEs and 暈 Backward Doubly Stochastic Differential Equations, Theoretical Probability, Vol.14,No.1, 125-164.
- **Filling** Bouchard B., Touzi N. (2004) : Discrete time approximation and Monte-Carlo Simulation of Backward Stochastic differential equations, Stochastic Processes and Their applications, 111, 175-206.

譶 Gobet, E., Lemor, J.P, Warin X.(2006) : Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equatio[ns](#page-40-0), [B](#page-42-0)[er](#page-40-0)[no](#page-41-0)[u](#page-42-0)[l](#page-28-0)[li](#page-29-0) [12](#page-42-0)[,](#page-29-0) [no](#page-42-0)[.](#page-0-0) [5,](#page-42-0) - ∢ 何 ▶ -∢ ヨ ▶ -∢ ヨ 889-916.

Thank you for your attention !

∢ロ ▶ ∢伺 ▶ ∢∃ ▶

一本語 **B** э 299