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A quasilinear Stochastic PDE

u(t, x) =φ(x) +

∫ T

t

[Lu(s, x) + f(s, x, u(s, x),∇(uσ)(s, x))]ds

+

∫ T

t

g(s, x, u(s, x),∇(uσ)(s, x))d
←−
B s, 0 ≤ t ≤ T.

where u : [0, T ]× Rd −→ RK and L is the second order differential operator
given by

L :=
1

2

d∑
i,j=1

(σσ∗)i,j
∂2

∂xi∂xj
+

d∑
i=1

bi
∂

∂xi
, Dσu := ∇uσ

(Bt)0≤t≤T is a standard Brownian motion.
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SPDEs with BDSDEs

Let (Xt,x
s )t≤s≤T be the solution of the SDE :

Xt,x
s = x+

∫ s

t

b(Xt,x
r )dr +

∫ s

t

σ(Xt,x
r )dWr, t ≤ s ≤ T

Assuming that this SDE has a solution, the couple (Y t,xs , Zt,xs )t≤s≤T ,where
Y t,xs = u(s,Xt,x

s ) and Zt,xs = (∇uσ)(s,Xt,x
s ) verify the BDSDE :

Ys =φ(Xt,x
T ) +

∫ T

s

f(Xt,x
r , Y t,xr , Zt,xr )ds

+

∫ T

s

g(Xt,x
r , Y t,xr , Zt,xr )

←−−
dBr −

∫ T

s

Zt,xr dWr, t ≤ s ≤ T.
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Some existing numerical methods to solve SPDEs

Mainly analytic methods, based on time-space discretization :
• Euler finite difference schemes (Gyongy I. and Nualart D., 1995.
Gyongy I., 1995).
• Finite elements schemes (Walsh J.B., 2005).
• Spectral Galerkin approximation (Jentzen A and Kloeden
P.,2010).
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An other alternative : Probablistic approach, using Monte
Carlo method

When g = 0 : solve a standard BSDE
• Bally V. (1997).
• Zhang J. (2004).
• Bouchard B.and Touzi N. (2004).
• Gobet E., Lemor J. and Warin X. (2006).
When g 6= 0 : We extend the Bouchard-Touzi-Zhang approach to
this case.
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- Let (Wt)0≤t≤T and (Bt)0≤t≤T be two independent standard
Brownian motions, with values respectively in Rd and in Rl,
defined on the probability space (Ω,F ,P).
-N denotes the class of P-null sets of F . For each t ∈ [0, T ],
T > 0, we define

F , FWt ∨ FBt,T
where for any process {ηt},
Fηs,t = σ{ηr − ηs, s ≤ r ≤ t} ∨ N ,Fηt = Fη0,t.
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Let t ≤ s1 ≤ s2. For some real number p ≥ 2 and for any n ∈ N,

Let Hpn([s1, s2]) denote the set of (classes of dP × dt a.e. equal) n dimensional
progressively measurable processes {ψu;u ∈ [s1, s2]} satisfying :
(i) ||ψ||pHpn([s1,s2]) := E[

∫ s2
s1
|ψu|pdu] <∞,

(ii) ψu is F tu-measurable, for a.e. u ∈ [s1, s2].

We denote similarly by Spn([s1, s2]) the set of continuous n dimensional
processes satisfying :
(i) ||ψ||pSpn([s1,s2]) := E[ sup

s1≤u≤s2
|ψu|p] <∞,

(ii) ψu is F tu-measurable, for any u ∈ [s1, s2].
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(H1) |b(x)− b(x′)|+ ‖σ(x)− σ(x′)‖ ≤ C|x− x′|, ∀x, x′ ∈ Rd.
(H2) there exist two constants K > 0 and 0 ≤ α < 1 such that for any
(t1, x1, y1, z1), (t2, x2, y2, z2) ∈ [0, T ]× Rd × Rk × Rk×d,

(i)|f(t1,x1,y1,z1)−f(t2,x2,y2,z2)| ≤ K
(√
|t1 − t2|+ |x1 − x2|

+|y1 − y2|+ ‖z1 − z2‖
)
,

(ii)‖g(t1, x1, y1, z1)− g(t2, x2, y2, z2)‖2 ≤ K
(
|t1 − t2|+ |x1 − x2|2

+|y1 − y2|2
)

+ α2‖z1 − z2‖2,
(iii)|Φ(x1)− Φ(x2)| ≤ K|x1 − x2|,
(vi) sup

0≤t≤T
|f(t, 0, 0, 0)|+ ||g(t, 0, 0, 0)|| ≤ K.

Yt =Φ(Xt,x
T )+

∫ T

t

f(Xs, Ys, Zs)ds+

∫ T

t

g(Xs, Ys, Zs)
←−−
dBs−

∫ T

t

ZsdWs, 0 ≤ t ≤ T.

A solution of this BDSDE is a pair (Y,Z) ∈ S2
k([t, T ])×H2

k×d([t, T ]) and
satisfying this equation.

Achref BACHOUCH Resolving SPDEs with BDSDEs



logo.eps

Numerical scheme for F-BDSDEs
Path regularity of the process Z

Rate of convergence for the BDSDE
Numercical scheme for the weak solution of the SPDE

Implementation and numerical tests

Numerical scheme

The Forward process X : Euler scheme

π : t0 < t1 < ... < tN = T is a partition of [0, T ] with mesh
|π| = h = max1≤n≤N |tn − tn−1|.
∆Wn = Wtn+1 −Wtn , and ∆Bn = Btn+1 −Btn , for n = 1, ..., N .

XN a relative approximation of X at these discretisation times : say it is
obtained throught an Euler scheme on the equation satisfied by X.
As N goes to infinity, sup0≤n≤N E|Xtn −XN

tn |
2 → 0.

The Euler scheme : Let x ∈ Rd

XN
0 = x, XN

tn+1
= XN

tn+1
+ b(XN

tn)h+ ∆Wnσ(XN
tn).

Achref BACHOUCH Resolving SPDEs with BDSDEs



logo.eps

Numerical scheme for F-BDSDEs
Path regularity of the process Z

Rate of convergence for the BDSDE
Numercical scheme for the weak solution of the SPDE

Implementation and numerical tests

Numerical scheme

The Forward-Backward Doubly SDE

The solution (Y,Z) of the F-BDSDE is approximated by (Y N , ZN ) defined by :

Y NtN = Φ(XN
T ),

and for 0 ≤ n ≤ N − 1,

Y Ntn = Etn [Y Ntn+1
+ hf(tn, θ

N
n )] + g(tn+1,Θ

N
n+1)∆Bn],

hZNtn = Etn

[
Y Ntn+1

∆W ∗n + g(tn+1,Θ
N
n+1)∆Bn∆W ∗n

]
,

where

θn
N := (Xtn

N ,Ytn+1

N ,Ztn
N ),ΘN

n+1:=(XN
tn+1

, Y Ntn+1
, Etn+1[Z

N
tn ]), ∀n = 0, ..,N−1.

∗ denotes the transposition operator and Etn denotes the conditional
expectation over the σ-algebra Ftn .
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Numerical scheme

continuous-time approximation of the FBDSDE

We define also for all n = 0, .., N − 1, (Y N , ZN )tn≤s<tn+1 as the solution of
the following BDSDE :{

dY Ns = −f(tn, θ
N
n )ds− g(tn+1,Θ

N
n+1)
←−−
dBs + ZNs dWs,

∀n, Y Ntn is given by our numerical scheme.
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Malliavin Calculus for the FBSDE

F is a r.v. of the form F = f̂(W (h1), ...,W (hn), B(k1), ..., B(kp)) with
f̂ ∈ C∞b (Rn+p,R), h1, ..., hn ∈ L2([0, T ],Rd), k1, ..., kp ∈ L2([0, T ],Rl), where

W (hi) :=

∫ T

0

hi(s)dWs, B(kj) :=

∫ T

0

kj(s)
←−−
dBs.

DsF :=

n∑
i=1

∇if̂
(
W (h1), ...,W (hn);B(k1), ..., B(kp)

)
hi(s), 0 ≤ s ≤ T,

(DsF )s is the Malliavin derivative of F w.r.t. W . S is the set of random
variables of the above form. For such F , we define its norm as :

‖F‖1,2 :=
{
E[F 2] + E

[ ∫ T

0

|DsF |2ds
]} 1

2 .

D1,2 , S‖.‖1,2 .
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Malliavin Calculus for the FBSDE

(H3(i)) b ∈ C1
b (Rd,Rd) and σ ∈ C1

b (Rd,Rd×d)

(H3(ii)) b∈ C2
b (Rd,Rd) and σ ∈ C2

b (Rd,Rd×d)
(H3(iii)) Φ ∈ C1

b (Rd,Rk), f ∈ C1
b ([0, T ]× Rd × Rk × Rd×k,Rk)

and g∈ C1
b ([0, T ]× Rd × Rk × Rd×k,Rk×l)

(H3(iv)) Φ ∈ C2
b (Rd,Rk), f ∈ C2

b ([0, T ]× Rd × Rk × Rd×k,Rk)

and g∈ C2
b ([0, T ]× Rd × Rk × Rd×k,Rk×l).
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Malliavin calculus on the Forward SDE’s

Under (H3(i)) and (H3(ii)), there exists C > 0 s.t.

E
[

sup
0≤u≤T

||DsXu||p
]
≤ C(1 + |x|p),

E
[

sup
s∨r≤u≤T

||DsXu −DrXu||p
]
≤ C|s− r|(1 + |x|p),

E
[

sup
0≤u≤T

||DrDsXu||p
]
≤ C(1 + |x|2p).
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Representation results for BDSDEs

Proposition

Assume that (H1)-(H3) hold. Then : For t ≤ s ≤ T , we have

DsYs = Zs,

and

‖Z‖2S2
k×d([t,T ]) ≤ C(1 + |x|2).

For l1, l2 ≤ d, t ≤ s ≤ T , we have

Dl2
s D

l1
t Ys = Dl2

t Z
l1
s ,

and

‖Dl1
s Z‖2S2

k×d([t,T ]) ≤ C(1 + |x|4).
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Path regularity

We extend the result of Zhang J.(2004) which concerns the L2-regularity of the
martingale integrand Z

Proposition

Assume that (H1)-(H3) hold. Then for t ≤ s ≤ u ≤ T , we have

E
[

sup
r∈[s,u]

|Yr − Ys|2
]
≤ C(1 + |x|2)|u− s|,

E
[
||Zu − Zs||2

]
≤ C(1 + |x|2)|u− s|.
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Main Result

Discrete time approximation error and rate of convergence for the BDSDE

Assume that the hypothesis (H1)-(H3) hold, define the error

ErrorN (Y,Z) := sup
0≤t≤T

E[|Yt − Y Nt |2] +

N−1∑
n=0

E[

∫ tn+1

tn

||ZNtn − Zt||
2dt],

Then there exists a positive constant C (depending on T , K, α, |b(0)|, ||σ(0)||,
|f(t, 0, 0, 0)| and ||g(t, 0, 0, 0)||) such that

ErrorN (Y,Z) ≤ Ch(1 + |x|2).
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Main tools

Genralized Itô Lemma for BDSDEs.
Define the proxy Z̄ on each interval [tn, tn+1) by

Z̄tn =
1

h
Etn [

∫ tn+1

tn

Zsds].

Young inequality.
Gronwall Lemma.
Path regularity.
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Numercical scheme for the weak solution of the SPDE

Weak solution of SPDEs

Since we work on the hole space Rd, we need to introduce a weight function
which is integrable and satisfies

∫
Rd(1 + |x|2)ρ(x)dx <∞.

For example, ρ(x) = e−
x2

2 or ρ(x) = e−|x|.
We add more integrability

(Hρ) (i)

∫
Rd
|φ(x)|2ρ(x)dx <∞,

(ii)

∫ T

0

∫
Rd
|f(t, x, 0, 0)|2ρ(x)dxdt <∞,

(iii)

∫ T

0

∫
Rd
|g(t, x, 0, 0)|2ρ(x)dxdt <∞.

Achref BACHOUCH Resolving SPDEs with BDSDEs
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Numercical scheme for the weak solution of the SPDE

Weak solution of SPDEs

L2(Rd, ρ(x)dx) is the wighted Hilbert space,

(u, v) :=
∫
Rd u(x)v(x)ρ(x)dx, ‖u‖2 := (u, u)

1
2 .

H1
σ(Rd) the associated wighted first order Sobolev space and its norm

‖u‖H1
σ(Rd) = (‖u‖22 + ‖∇uσ‖22)

1
2 .

D := C∞c ([0, T ])⊗ C2c (Rd) is the space of test functions.
HT is the space of predictable processes (ut)t≥0 valued in H1

σ(Rd) such that

‖u‖T =
(
E
[

sup
0≤t≤T

‖ut‖22
]

+ E
[ ∫ T

0

‖∇utσ‖2dt
]) 1

2
<∞.
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Numercical scheme for the weak solution of the SPDE

Definition

We say that u ∈ HT is a weak solution of the SPDE associated with the
terminal condition φ and the coefficients (f, g), if the following relation holds
almost surely, for each ϕ ∈ D∫ T

t

(u(s, .),∂sϕ(s, .))ds+

∫ T

t

E(u(s,.),ϕ(s, .))ds+(u(t, .),ϕ(t, .))−(φ(.),ϕ(T, .))

=

∫ T

t

(f(s, .,u(s, .),(∇uσ)(s,.)),ϕ(s,.))ds+
l∑
i=1

∫ T

t

(g(s,.,u(s,.),(∇uσ)(s,.)),ϕ(s,.))
←−−
dBis,

where

E(u, ϕ) = (Lu, ϕ) =

∫
Rd

((∇uσ)(∇ϕσ) + ϕ∇((
1

2
σ∗∇σ + b)u))(x)dx

is the energy of the system associated with the SPDE.
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Numercical scheme for the weak solution of the SPDE

Theorem

Under (H1),(H2), (H3) and (Hρ), there exists a unique weak solution u ∈ HT
of the SPDE associated with the terminal condition Φ.
Moreover, u(t, x) = Y t,xt and Zt,xt = ∇utσ, dt⊗ dx⊗ dP a.e. where
(Y t,xs , Zt,xs )t≤s≤T is the solution of the BDSDE.
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Numercical scheme for the weak solution of the SPDE

Lemma

Let x ∈ Rd and t, tn ∈ π such that t ≤ tn. Define

uNtn(x) := Y N,tn,xtn
and vNtn(x) := ZN,tn,xtn

.

Then uNtn (resp. vNtn) is FBtn,T -measurable and we have

uNtn(Xt,x
tn

) = Y N,t,xtn
(resp. vNtn(Xt,x

tn
) = ZN,t,xtn

).

Achref BACHOUCH Resolving SPDEs with BDSDEs
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Numercical scheme for the weak solution of the SPDE

We define the process (uNs , v
N
s ) as follows :

uNs (x) := Y N,s,xs and vNs (x) := ZN,s,xs ,∀s ∈ [tn, tn+1).

Then

uNs (Xt,x
s ) = Y N,t,xs and vNs (Xt,x

s ) = ZN,t,xs , ∀t ≤ s, t, s ∈ [tn, tn+1).

We define the following error :

ErrorN (u, v) := sup
0≤s≤T

EB [

∫
Rd
|uNs (x)− u(s, x)|2ρ(x)dx]

+

N−1∑
n=0

EB [

∫
Rd

∫ tn+1

tn

‖vNs (x)− v(s, x)‖2dsρ(x)dx].

Achref BACHOUCH Resolving SPDEs with BDSDEs
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Numercical scheme for the weak solution of the SPDE

Theorem : Rate of convergence for the SPDE

Assume that (H1),(H2), (H3) and (Hρ) hold. Then, the error ErrorN (u, v)
converges to 0 as N →∞ and there exists a positive constant C (depending
only on T , K, α, |b(0)|, ||σ(0)||, |f(t, 0, 0, 0)| and ||g(t, 0, 0, 0)||) such that

ErrorN (u, v) ≤ Ch.
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Notations and algorithm

For each fixed path of B, the solution of the BDSDE is approximated by
(Y N , ZN ) : For 0 ≤ n ≤ N − 1

∀j1 ∈ {1, .., k},

Y Ntn,j1=Etn

[
Y Ntn+1,j1+hfj1(X

N
tn,Y

N
tn+1

,ZNtn)+

l∑
j=1

gj1,j(X
N
tn+1

,Y Ntn+1
,Etn+1[Z

N
tn])∆Bn,j

]
,

∀j1 ∈ {1, .., k} and ∀j2 ∈ {1, .., d}

hZNtn,j1,j2=Etn

[
Y Ntn+1,j1∆Wn,j2 +

l∑
j=1

gj1,j(X
N
tn+1

,Y Ntn+1
, Etn+1 [ZNtn ])∆Bn,j∆Wn,j2

]
.

Achref BACHOUCH Resolving SPDEs with BDSDEs
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Notations and algorithm

Vector spaces of functions

At every tn, we select k(d+ 1) deterministic functions bases
(pi,n(.))1≤i≤k(d+1).
We look for approximations of Y Ntn and ZNtn which will be denoted respectively
by yNn and zNn , in the vector space spanned by the basis (pj1,n(.))1≤j1≤k
(respectively (pj1,j2,n(.))1≤j1≤k,1≤j2≤d). For example, the hypercube basis.
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Description of the algorithm

→ Initialization : For n = N , take (yN,mN ) = (Φ(XN,m
tN

)).
→ Iteration : For n = N − 1, ..., 0 :
• We use I Picard iterations to obtain an approximation of Ztn :
· For i = 0, ∀j1 ∈ {1, .., k} and j2 ∈ {1, .., d}, αM,0j1,j2,n

= 0.

· For i = 1, .., I : We compute first Etn+1 [ZNtn ] appearing in (1) :

α′M,i−1
j1,j2,n+1 = arginf

α′

1

M

M∑
m=1

∣∣∣αM,i−1
j1,j2,n

.pmj1,j2,n − α
′.pmj1,j2,n+1

∣∣∣2,
we set z′N,M,i−1

n+1,j1,j2
(.) = (α′M,i−1

j1,j2,n+1.pj1,j2,n+1(.)). After that,

αM,ij1,j2,n = arginf
α

1

M

M∑
m=1

∣∣∣yN,Mn+1,j1
(XN,m
tn+1

)
∆Wm

n,j2

h

+
l∑

j=1

gj1,j
(
XN,m
tn+1

,yN,Mn+1 (XN,m
tn+1

),(α′M,i−1
j1,j2,n+1

.pmj1,j2,n+1)
)∆Bn,j∆W

m
n,j2

h
−α.pmj1,j2,n

∣∣∣2.
Then we set zN,M,In,j1,j2

(.) = (αM,Ij1,j2,n
.pj1,j2,n(.)).

• We first compute Etn+1 [ZNtn ] appraring in (1) :

α′M,Ij1,j2,n+1 = arginf
α′

1

M

M∑
m=1

∣∣∣αM,Ij1,j2,n
.pmj1,j2,n − α

′.pmj1,j2,n+1

∣∣∣2,
then we set z′N,M,In+1,j1,j2

(.) = (α′M,Ij1,j2,n+1.pj1,j2,n+1(.)), j1 ∈ {1, ..k},
j2 ∈ {1, ..d}.
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Notations and algorithm

Description of the algorithm

After that we approximate (1) by calculating αMj1,n, for every j1 ∈ {1, .., k}, as
the minimizer of :

1

M

M∑
m=1

∣∣∣yN,Mn+1,j1
(XN,m

tn+1
)+ hfj1

(
XN,m
tn

,yN,Mn+1 (XN,m
tn+1

),zN,M,In (XN,m
tn

)
)

+
l∑

j=1

gj1,j
(
XN,m
tn+1

,yN,Mn+1 (XN,m
tn+1

),z′N,M,In+1 (XN,m
tn+1

)
)
∆Bn,j −α.pmj1,k

∣∣∣2.
Finally, we define yN,Mn (.) as :

yN,Mn,j1
(.) = (αMj1,n.pj1,n(.)), ∀j1 ∈ {1, .., k}.
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One dimensionnal case (Case when d = k = l = 1)

Case when f and g are linear in y and independant of z

{
dXt = Xt(µdt+ σdWt),

Φ(x) = −x+K, f(y) = a0y, g(y) = b0y

and we set K = 115, r = 0.01, R = 0.06, X0 = 100, µ = 0.05, σ = 0.2,
T = 0.25, d1 = 60 , d2 = 200 , a0 and b0 are fixed constants.
Let Yexplicit be the solution of our BDSDE in this particular case.
By an integration by parts formula we get

Y t,xt,explicit = E[Φ(Xt,x
T )ea0(T−t)+b0(BT−Bt)−

1
2
b20(T−t)/FBt,T ]

At t=0, we have

Y 0,x
0,explicit = E[Φ(X0,x

T )e(a0−
1
2
b20)T+b0BT /FB0,T ]

= e(a0−
1
2
b20)T+b0BTE[Φ(X0,x

T )].
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One dimensionnal case (Case when d = k = l = 1)

Case when f and g are linear in y and independant of z

In the other hand, we compute the solution Y 0,x
0,explicit in this linear case by

using the explicit formula of the expectation of X0,x
T ,

Y 0,x
explicit = e(a0−

1
2
b20)T+b0BTE[Φ(X0,x

T )] = e(a0−
1
2
b20)T+b0BT (K − xeµT )
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One dimensionnal case (Case when d = k = l = 1)

Case when f and g are linear in y and independant of z

For a0 = 0.5, b0 = 0.5 and δ = 1

N=20, Y 0,x
explicit = 13.724

M Y
0,x,N,M
0 (σN,M )

|Y 0,x
explicit

−Y 0,x,N,M
0 |

Y
0,x
explicit

100 13.911(1.178) 0.013

1000 13.793(0.309) 0.004

5000 13.848(0.117) 0.009

For a0 = 0.5, b0 = 0.5 and δ = 0.5

N=30, Y 0,x
explicit = 14.115

M Y
0,x,N,M
0 (σN,M )

|Y 0,x
explicit

−Y 0,x,N,M
0 |

Y
0,x
explicit

100 14.245(1.045) 0.009

1000 14.194(0.337) 0.005

5000 14.235(0.129) 0.008
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One dimensionnal case (Case when d = k = l = 1)

Comparison of numerical approximations of the solutions of the FBDSDE and
the FBSDE in the general case


Φ(x) = −x+K,

f(t, x, y, z) = −θz − ry + (y − z
σ

)−(R− r)
g1(t, x, y, z) = 0.1z + 0.5y + log(x)

and we set θ = (µ− r)/σ, K = 115, X0 = 100, µ = 0.05, σ = 0.2, r = 0.01,
R = 0.06, δ1 = 1, N = 20, T = 0.25 and we fix d1 = 60 and d2 = 200and we
set θ = (µ− r)/σ, K1 = 95, K2 = 105, X0 = 100, µ = 0, 05, σ = 0, 2,
r = 0, 01, R = 0, 06, δ1 = 1,N = 20 , T = 0, 25 and we fix d1 = 60 and
d2 = 200.
We finally note that for the contraction constant taken in the following
(α = 0.1), our algorithm converges after at most three Picard iterations.
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Comparison of numerical approximations of the solutions of the
FBDSDE and the FBSDE in the general case : When t = 0

M Y
0,x,N,M
0,BSDE(σN,M ) Y

0,x,N,M
0 (σN,M )

128 15.431(1.005) 13.427(1.175)

512 15.029(0.428) 12.801(0.474)

2048 14.763(0.243) 12.476(0.263)

8192 14.718(0.098) 12.403(0.099)

32768 14.715(0.060) 12.391(0.056)
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One dimensionnal case (Case when d = k = l = 1)

Figure : The BDSDE’s solution with respect to the number of time
discretization steps is with cross markers. Confidence interval are with
dotted lines. The figure is obtained for M = 2000 and δ = 1.
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One dimensionnal case (Case when d = k = l = 1)

Finally, we see on the following figure the impact of the function g on the
solution ; we variate N , M and d as follows : First we fix d1 = 40 and
d2 = 180. Let j ∈ N, we take αM = 3, β = 1, N = 2(

√
2)(j−1),

M = 2(
√

2)αM (j−1) and d = 50/(
√

2)(j−1)(β+1)/2. Then, we draw the map of
each solution at t = 0 with respect to j.
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One dimensionnal case (Case when d = k = l = 1)

Figure : Comparison of the BSDE’s solution and the BDSDE’s one :
The solution of the BSDE is with circle markers, the solution of the
BDSDE for g1(x, y, z) = 0.1z + 0.5y + log(x) is with star markers and
the one for g2(y, z) = 0.1z + 0.5y is with cross markers. Confidence
intervals are with dotted lines.
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Thank you for your attention !
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