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A quasilinear Stochastic PDE

u(t,z) =¢(x) —l—/t [Lu(s,z) + f(s,z,u(s,z), V(uo)(s,x))]ds
+/t g(s,x,u(s,x),V(ua)(s,x))d%s, 0<t<T.

where u : [0,T] x R — RX and £ is the second order differential operator

given by
d d
1 . 0? o}
= = A A o i 5 5 D(7 =
L 2 i?:l(aa )i D2 O AF ;:1 b Bgi u = Vuo

(Bt)o<t<r is a standard Brownian motion.
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SPDEs with BDSDEs

Let (X%®);<s<T be the solution of the SDE :
Xt =g +/ b(X0")dr +/ o(XP*)dW,, t<s<T
t t

Assuming that this SDE has a solution, the couple (Y%, Z1®);<s<7,where
YI® = u(s, X5%) and Z5* = (Vuo)(s, X*) verify the BDSDE :

T
Y, =p(X5%) + / F(XE®, Y0®, 287 ds

T - T
+ [ e vin 2B, - [ zitaw,, t<s<r
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Some existing numerical methods to solve SPDEs

Mainly analytic methods, based on time-space discretization :

e Euler finite difference schemes (Gyongy I. and Nualart D., 1995.
Gyongy |., 1995).

e Finite elements schemes (Walsh J.B., 2005).

e Spectral Galerkin approximation (Jentzen A and Kloeden
P.,2010).
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An other alternative : Probablistic approach, using Monte
Carlo method

When g = 0 : solve a standard BSDE

e Bally V. (1997).

e Zhang J. (2004).

e Bouchard B.and Touzi N. (2004).

e Gobet E., Lemor J. and Warin X. (2006).

When g # 0 : We extend the Bouchard-Touzi-Zhang approach to
this case.
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- Let (Wi)o<t<r and (Bi)o<i<T be two independent standard
Brownian motions, with values respectively in R? and in R/,
defined on the probability space (2, F,P).

-\ denotes the class of P-null sets of F. For each ¢ € [0,T],
T > 0, we define

FEFVVvFE

where for any process {1},
For =o{n —ns,s <r <ty VN, F = Fg,.
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Let ¢t < s1 < s2. For some real number p > 2 and for any n € N,

Let HE ([s1, s2]) denote the set of (classes of dP X dt a.e. equal) n dimensional
progressively measurable processes {t.; u € [s1, s2]} satisfying :

(') ||w||}pﬂg([31752]) = E[fsf |¢u\pdu] < 00,

(i) tu is Fi-measurable, for a.e. u € [s1, 52].

We denote similarly by S? ([s1, s2]) the set of continuous n dimensional
processes satisfying :
() 11011, ¢y, o,y = Bl sup [ul”] < oo,

s1,82]) o S
(i) 1 is Fi-measurable, for any u € [s1, s2].
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(H1) |b(z) — b(z")| + ||lo(z) — o(z')|| < Clz — '], Vz, 2’ € R%.

(H2) there exist two constants K > 0 and 0 < a < 1 such that for any
(t1, 21,1, 21), (ta, T2, Y2, z2) € [0,T] x R x RF x RF*4,

(V) ft1,21,y121) = flb2,02,y2,22)| < K (V/[t1 — t2| + |21 — 22|
Hyr — 2| + 21 = 22]l),
([@)lg(tr, 21,51, 21) — g(ta, x2,2, 22)|1> < K (Jta — to| + |x1 — 22|
+yr — 121?) + 0?21 — 22|,
(iii) |®(z1) — @(z2)| < K21 — 22|,
(vi) sup [f(¢,0,0,0)| +|g(¢,0,0,0)[| < K.
0<t<T

T T « T
Y; :@(X;@)Jr/ f(X,, Y5, Zs)ds+/ 9(X, Y, ZS)dBS—/ ZAW5,0<t < T.
t t t

A solution of this BDSDE is a pair (Y, Z) € Si([t, T]) x H 4([t, T]) and
satisfying this equation.
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Numerical scheme for F-BDSDEs

Numerical scheme

The Forward process X : Euler scheme

mito <t1 <..<ty =T is a partition of [0,7] with mesh
|| = h = maxi<n<n [tn — tn-1].

AW, =Wy, .y — Wy, and AB,, = By, ,, — By, forn=1,...,N.

X7 a relative approximation of X at these discretisation times : say it is
obtained throught an Euler scheme on the equation satisfied by X.

As N goes to infinity, supo<,<y E|X:, — X7\ |> — 0.

The Euler scheme : Let z € R?

Xo ==z, Xiy,, =X\ +bX)h+ AWo(X7)).
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Numerical scheme for F-BDSDEs

Numerical scheme

The Forward-Backward Doubly SDE

The solution (Y, Z) of the F-BDSDE is approximated by (Y, Z™) defined by :

Yiy = ®(X7),
and for 0 <n < N —1,

Y = B, [V, 4 hf(tn, 00)] + g(tnt1, ©051) ABy),

hZ{\, = By, | Y2, AWy + g(tnt1, 07 11) AB. AW, |,

n+1
where

0" = Ko Ve 20, Onni= X1, Yok, BonlZ)),¥n =0, ,N—1.

n+1

* denotes the transposition operator and E;, denotes the conditional
expectation over the o-algebra F},,.
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Numerical scheme for F-BDSDEs

Numerical scheme

continuous-time approximation of the FBDSDE

We define also for all n = 0,.., N — 1, (Y",Z"),, <sct,,, as the solution of
the following BDSDE :

<_
dYY = —f(tn, 08 )ds — g(tn+1, 05 1)dBs + ZN dWs,
Vn, Yti\; is given by our numerical scheme.
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Path regularity of the process Z

Malliavin Calculus for the FBSDE

Fis a rv. of the form F = f(W(ha), ..., W (hn, ),B( ) ., B(kp)) with
f e Ce®R™PR), ha, ..., hn € L*(0, T], R? 0

=
=l
s
=
o)
1)

W(hi) == /OT hi(s)dWs, B(k;) = /OT k;(s)dB,.

D.F = ivif(W(hl), oy W(hn); B(k1), ...,B(kp)) hi(s),0< s <T,

(DsF)s is the Malliavin derivative of F w.r.t. W. S is the set of random
variables of the above form. For such F', we define its norm as :

a
(I1F|l1,2 := {E —|—E[/ |D5F|2ds}}%.
0

1,2 a gll-ll1,2
D" =S .
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Path regularity of the process Z

Malliavin Calculus for the FBSDE

(H3(i)) be Cp(RY,RY) and o € Cp (R?, R*?)
(H3(ii)) be CZ(RY,RY) and ¢ € CZ(R?, R4*?)
(H3(iii)) ® € CH(RY,RF), f € CL([0,T] x R? x RF x RY*F RF)
and g€ CL([0,T] x RY x R* x RI** RF*I)
(H3(iv)) ® € Ci(RY,R*), f € C3([0,T] x R? x R¥ x R¥**, R¥)
and g€ CZ([0,T] x RY x R¥ x R¥xF RFX!),
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Path regularity of the process Z

Malliavin calculus on the Forward SDE's

Under (H3(i)) and (H3(ii)), there exists C' > 0 s.t.

E[ sup HDquHP] <C(1+=[?),

0<u<T

E[ sup || DsXu — Drxuup] < Ols — (1 + |z?),

sVr<u<T

E[ sup |ID.D.Xu|"] < C(1+ o).
0<u<T
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Path regularity of the process Z

Representation results for BDSDEs

Proposition
Assume that (H1)-(H3) hold. Then : Fort < s < T, we have

DsYs = ZS7
and
2 2
HZHSixd([t,T]) <C(1+|z[%).
Forli,lo <d, t<s<T, we have
D2Dly, = D2 Z!
and

!
ID2 212 oy < CO+ [2f*).
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Path regularity of the process Z

Path regularity

We extend the result of Zhang J.(2004) which concerns the L2-regularity of the
martingale integrand Z

Proposition

Assume that (H1)-(H3) hold. Then fort < s <u < T, we have

E[ swp |V, -Y.P"| < c(+leP)u-sl,
r€[s,u]

E[l1Z. - ZIP] < €O+ P)lu-sl.
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Rate of convergence for the BDSDE

Main Result

Discrete time approximation error and rate of convergence for the BDSDE

Assume that the hypothesis (H1)-(H3) hold, define the error

N-1 tn41
Errorn(Y,2) = sup BV - Y[+ ¥ B / 12— z||%dt),
o<t<T n—0 tn

e (01,

Then there exists a positive constant C (depending on T', K, «, [b(0)
|f(¢,0,0,0)| and ||g(¢,0,0,0)||) such that

Errorn(Y,Z) < Ch(1 + |z]?).
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Rate of convergence for the BDSDE

Main tools

Genralized 1t6 Lemma for BDSDEs.
Define the proxy Z on each interval [tn,tn+1) by

_ 1 tn41
Ztn = *Etn [/ ZSdS].
h t

Young inequality.
Gronwall Lemma.
Path regularity.
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Numercical scheme for the weak solution of the SPDE

Numercical scheme for the weak solution of the SPDE

Weak solution of SPDEs

Since we work on the hole space R¢, we need to introduce a weight function
which is integrable and satisfies [, (1 + |z|*)p(z)dz < oo.
2

For example, p(z) = e~ 7 or p(x) = e~ 17l
We add more integrability

E)O [ 1B <o,

@ : [ 152,00 p(@)dodt < o

T
(iii) / / lg(t, z,0,0))? p(x)dxdt < cc.
0 R4

Achref BACHOUCH Resolving SPDEs with BDSDEs



Numercical scheme for the weak solution of the SPDE

Numercical scheme for the weak solution of the SPDE

Weak solution of SPDEs

L*(R?, p(z)dzx) is the wighted Hilbert space,
1

(u, ) := [pa u(@)v(@)p(z)de, |[ull2 = (u,u)=.
HZX(R?) the associated wighted first order Sobolev space and its norm

1
lull g1 ey = (Jul3 + [ Vuol[3)=.
D :=C([0,T]) ® C2(R?) is the space of test functions.
Hr is the space of predictable processes (u;):>o valued in HE:(R?) such that

1

lullr = (E[OE?ET HutHg] + E[/OT ||Vuta||2dt])§ < 0.
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Numercical scheme for the weak solution of the SPDE

Numercical scheme for the weak solution of the SPDE

Definition

We say that u € Hr is a weak solution of the SPDE associated with the
terminal condition ¢ and the coefficients (f, g), if the following relation holds
almost surely, for each ¢ € D

] s 2upts, st [ Etuts, ol Ndsutt (e, D6 (T, )
—
/ (F(5, (s, ) (Vu0) ) hds.) ds+z 5.50(5.,(Var) () s ) AL,

where

E(u, ) = (Lu, ¢) :/R ((VUU)(VW)+<PV(( 0" Vo + bju))(x)dx

is the energy of the system associated with the SPDE.
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Numercical scheme for the weak solution of the SPDE

Numercical scheme for the weak solution of the SPDE

Under (H1),(H2), (H3) and (H,), there exists a unique weak solution u € Hr
of the SPDE associated with the terminal condition ®.

Moreover, u(t,z) = Y,"* and Z;* = Vw0, dt ® de @ dP a.e. where

(Yo", Zb%),<s<1 is the solution of the BDSDE.

s
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Numercical scheme for the weak solution of the SPDE

Numercical scheme for the weak solution of the SPDE

l

Let x € R? and t,t, € 7 such that t < t,. Define

upr (z) := Y,V and o] (z) := Z "

Then uy, (resp. v\ ) is FE r-measurable and we have

ug, (Xt =) = thjtz (resp. vi\; (anz) = Zth’t’z).
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Numercical scheme for the weak solution of the SPDE

Numercical scheme for the weak solution of the SPDE

We define the process (ul',vYY) as follows :

ul (z) == Y,'5" and vl (z) := Z)*" Vs € [tn, tni1).
Then
ul (X0®) = YN and o) (X07) = ZN0T VYt < s,t, 5 € [tn, tns1).-

We define the following error :

0<s<T

+ ZEB[// oY (2) — v(s, )|2dsp(z)da].

Errory(u,v) := sup Ep [/d lul (z) — u(s, z)|* p(z)da]
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Numercical scheme for the weak solution of the SPDE

Numercical scheme for the weak solution of the SPDE

Theorem : Rate of convergence for the SPDE

Assume that (H1),(H2), (H3) and (H,) hold. Then, the error Errory(u,v)
converges to 0 as N — oo and there exists a positive constant C (depending
only on T, K, a, |b(0)|, [|o(0)|], |f(¢,0,0,0)| and ||g(¢,0,0,0)||) such that

Errorn(u,v) < Ch.
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Implementation and numerical tests

Notations and algorithm

For each fixed path of B, the solution of the BDSDE is approximated by
(YN, ZN) :For0<n<N-—1

le S {]., ey k‘},

l
thdl :Etn [Ytly\;-l ,J'1+ hfjl(XthvY:fN ZtJY—L)J’_Zgjl xj(XiI::+ 1’Y;'17\7,]+17Etn+1gt1:£| )ABHJ] )

n+17
Jj=1

Vi1 € {1,.,k} and Vj2 € {1,..,d}

!
W20y 5155 Vi 151 W g2 + D 01 Xy Yittss Bt [Z00]) ABn AW .

j=1
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Implementation and numerical tests

Notations and algorithm

Vector spaces of functions

At every t,, we select k(d + 1) deterministic functions bases

(Piyn ())1<i<k(dt1)-

We look for approximations of Yt’: and Zf: which will be denoted respectively
by ¥ and 2%, in the vector space spanned by the basis (pj, . (.)) 1<, <k
(respectively (pj, jo,n(-))1<j1<k,1<ja<a). For example, the hypercube basis.
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Implementation and numerical tests

Description of the algorithm

— Initialization : For n = N, take (yN'™) = (@(ng’m)).
— lteration : Forn =N —1,...,0 :

e We use [ Picard iterations to obtain an approximation of Zy,
- Fori=0,Vj €{1,..,k} and jo € {1,..,d}, o’

J1,]2, =0.
- Fori=1,..,I: We compute first Eth[Ztn] appearing in (1) :
M
IM,i—1 _ . fi M,i—1 romo 2
Q)1 52,41 B M ah,sz lesz = O .Dji 52,41 >
a/
m=1
N,M,i—1
we set z 0"

M,i—1
e () = (a1 Do a1 (). After that,

i AW
My _ N,m n,j2
X pn = arglnfM Z yn+1 1 (Xtﬂ+1) h

m Mot m \ABn AW
3 g (K SO I g ) SE N
i=1

m
At Pig,ntl n —Dipn
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Implementation and numerical tests

Notations and algorithm

Description of the algorithm

After that we approximate (1) by calculating ! ,,, for every ji € {1,..,k}, as
the minimizer of :

MZ

x Nom | N. My Nomy IN M,y m
+§ gjl,j( n+17yn+l(th+1)7zn+l X n+1))AB n,j —OPj, k

N N,M (N, N,M,I/xN,
n+1 31 n+1)+ hf]l( tnmvyn+1 (thﬁ)v n (th m))

‘ 2

Finally, we define 2" (.) as :

Ynin () = (05 ,n-Pin.n()), Vi1 € {1,..,K}.
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Implementation and numerical tests

One dimensionnal case (Case when d = k =1 =1)

Case when f and g are linear in y and independant of z

dXe = X, (pdt + cdWt),
O(z) = —z+ K, f(y) = aoy, 9(y) = boy

and we set K = 115, »r = 0.01, R = 0.06, X, = 100, x = 0.05, 0 = 0.2,
T =0.25, d1 =60, do =200, ap and by are fixed constants.
Let Yezpiicit be the solution of our BDSDE in this particular case.
By an integration by parts formula we get
y e _ E[@(X;z)eao(Tft)erO(BTth)f%bg(Tft)/]_-tBT}

t,explicit =

At t=0, we have

YO,:c _ E[(I)(X%’x)e(a07%bg)TeroBT/]:(fT}

0,explicit
2

e(ao—%bo)T-&-boBT E[(IJ(X%QC)].
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Implementation and numerical tests

One dimensionnal case (Case when d = k =1 =1)

Case when f and g are linear in y and independant of z

o

In the other hand, we compute the solution YOO,ea:plici

. in this linear case by
using the explicit formula of the expectation of X%,

0,z _ _(ao—31v2)T+boBr 0,2\1 _ _(ag—1b3)T+boBr uT
Yexplicit =e ZhS E[q)(XT )] =€ 2hS (K —ze )
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Implementation and numerical tests

One dimensionnal case (Case when d = k =1 =1)

Case when f and g are linear in y and independant of z

For ap = 0.5, bo =0.5and § = 1
M ?gvmvNaM(o_N,IW) Iyeoalzliciéi?g’w’ JW‘
il
N=20, Y;Oar;;licit =13.724| 100 13.911(1.178) 0.013
1000 13.793(0.309) 0.004
5000 13.848(0.117) 0.009
For ap = 0.5, bo = 0.5 and § = 0.5
M ?gvzvNaM(o_N,M) IYeOz,Zlicigiig’z’ ,M‘
ennlicit
N=30, Y%, ;, = 14.115| 100 | 14.245(1.045) 0.009
1000 14.194(0.337) 0.005
5000 14.235(0.129) 0.008
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Implementation and numerical tests

One dimensionnal case (Case when d = k =1 =1)

Comparison of numerical approximations of the solutions of the FBDSDE and
the FBSDE in the general case

P(z) = —z + K,
f(t7m7y7z) =—0z 7’f'y+ (y - 5)7(R7T)
g1(t,z,y,2) = 0.1z + 0.5y + log(z)

and we set 0 = (u—r)/o, K =115, Xo = 100, = 0.05, 0 = 0.2, r = 0.01,
R =10.06, 01 =1, N =20, T'= 0.25 and we fix d1 = 60 and dz = 200and we
set = (u—r)/o, K1 =95, K2 =105, Xo =100, o = 0,05, 0 =0, 2,
r=0,01, R=0,06, 01=1,N =20, T = 0,25 and we fix d; = 60 and

dz = 200.

We finally note that for the contraction constant taken in the following

(a = 0.1), our algorithm converges after at most three Picard iterations.

Achref BACHOUCH Resolving SPDEs with BDSDEs



Implementation and numerical tests

Comparison of numerical approximations of the solutions of the

FBDSDE and the FBSDE in the general case : When t =0

—0,2,N,M
M Yo,BSDE(U
128 15.431(1.005) 13.427(1.175

)
512 | 15.029(0.428) | 12.801(0.474)
2048 | 14.763(0.243) | 12.476(0.263)
8192 | 14.718(0.098) | 12.403(0.099)
32768 | 14.715(0.060) | 12.391(0.056)

N,M) ?gvvavM(o.N,M)
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Implementation and numerical tests

One dimensionnal case (Case when d

FIGURE : The BDSDE's solution with respect to the number of time
discretization steps is with cross markers. Confidence interval are with
dotted lines. The figure is obtained for M = 2000 and § = 1.
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Implementation and numerical tests

One dimensionnal case (Case when d =k =1 =1)

Finally, we see on the following figure the impact of the function g on the
solution ; we variate N, M and d as follows : First we fix di = 40 and

do =180. Let j € N, we take aar =3, =1, N = 2(v/2)U 7,

M =2(y/2)*M0=Y and d = 50/(v/2)U~DBE+D/2 Then, we draw the map of
each solution at ¢ = 0 with respect to j.
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Implementation and numerical tests

One dimensionnal case (Case when

=0
.
#
=23
293
KEE
573
7 7
s ®
® ©

‘The approximation of the solution Y at time &

F1GURE : Comparison of the BSDE's solution and the BDSDE's one :
The solution of the BSDE is with circle markers, the solution of the
BDSDE for g1(x,y, 2) = 0.1z + 0.5y + log(x) is with star markers and
the one for go(y, z) = 0.1z 4+ 0.5y is with cross markers. Confidence
intervals are with dotted lines.



Implementation and numerical tests
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Implementation and numerical tests

Thank you for your attention !
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