Semimartingale models with additional information and their applications in Mathematical Finance

Anastasia Ellanskaya ¹ (joint work with L. Vostrikova) ²

^{1,2}LAREMA, U.M.R. 6093 associé au CNRS Université d'Angers, France

"Advanced Methods in Mathematical Finance", September 2-7, Angers, 2013

Modelling

- An investor carry out the trading of risky asset $S = \mathcal{E}(X)$, depending on random parameter ξ
- X is a semi-martingale which is also Markov-Feller process given on canonical probability space (Ω, F, P)
- ξ is random factor which can be a random variable or random process given on a canonical probability space (Σ, H, α)
- ξ can represent the additional economic information, for example a price process of a correlated risky asset or default time
- Dependence of the process X on ξ can be given by the family of regular conditional laws (P^u)_{u∈Σ}: ∀u ∈ Σ

$$P^u(X \in \cdot) = P(X \in \cdot | \xi = u)$$

• On product space $(\Omega \times \Sigma, \mathcal{F} \otimes \mathcal{H})$ one extends the probability measure \mathbb{P} : $\forall A \in \mathcal{F} \text{ and } \forall B \in \mathcal{H}$

$$\mathbb{P}(A \times B) = \int_{B} P^{u}(A) d\alpha(u).$$

Indifference pricing

- The same investor holds a European type option with pay-off function $G_T = g(\xi)$ which he can not trade because of lack of liquidity or legal restrictions.
- We consider the HARA utility functions, which are logarithmic, power and exponential utilities :

$$U(x) = \log x$$

$$U(x) = \frac{x^{p}}{p}, p < 1$$

$$U(x) = 1 - e^{-\gamma x}, \gamma > 0.$$

QUESTION What is indifference price for buyer and seller of the option or what is a deterministic amount of money which buyer would like to pay today (and seller would like to receive today) for the right to receive (to transmit) the option at time T and to be indifferent to the situation of the non-having a claim, in the sense that his expected utility will be not changed under the optimal trading strategies in the both situations?

Utility optimisation

Optimal expected utility with option:

$$V_{\mathcal{T}}(x,g) = \sup_{\phi \in \Pi} E_{\mathbb{P}}[U(x + \int_0^T \phi_s \, dS_s + g(\xi))]$$

• x is initial capital

• $\Pi = \bigcup_{c>0} \left\{ \varphi(\xi) \in \mathcal{P}(\mathbf{F}) \otimes \mathcal{H} \mid \int_{0}^{t} \varphi_{s}(\xi) dS_{s} \geq -c, \, \forall t \in [0, \, T] \, (\mathbb{P}\text{-a.s.}) \right\}$

Indifference price for buyer p_T^b is a solution of

$$V_T(x-p_T^b,g)=V_T(x,0)$$

Indifference price for seller p_T^s is a solution of

$$V_T(x+p_T^s,-g)=V_T(x,0)$$

Level of information about $\boldsymbol{\xi}$ change the class of self-financing admissible strategies which we use for maximisation.

- For non-informed agents, the class self-financing admissible strategies Π related with natural filtration $\mathbf{F} = (\mathcal{F}_t)_{0 \le t \le T}$ generated by risky asset *S*.
- for partially informed agents the class of self-financing admissible strategies will be related with progressively enlarged filtration with the process corresponding to ξ.
- For perfectly informed agents the class of self-financing admissible strategies will be related with initially enlarged filtration G = (G_t)_{0≤t≤T}

$$\mathcal{G}_t = \cap_{s>t}(\mathcal{F}_s \otimes \sigma(\xi))$$

• Often it is sufficient to consider the case of initial enlargement since for $t \in [0, T]$

$$\mathcal{F}_t \subseteq \tilde{\mathcal{F}}_t \subseteq \mathcal{G}_t$$

and

$$\tilde{\mathcal{F}}_{\mathcal{T}} = \mathcal{G}_{\mathcal{T}}$$

• The indifference prices are independent on the level of awareness of investor, since the sets of the equivalent martingale measures coincide at the terminal time *T* and the "best" martingale measure on the initially enlarged filtration, if it exists, is the same "best" martingale measure on the progressively enlarged filtration.

Main assumptions

- P is the law of X
- P^u is the regular conditional law of X given $\xi = u$
- α^t is the regular conditional distribution of ξ given \mathcal{F}_t

ASSUMPTION 1 For all $t \in]0, T]$

 $\alpha^t \ll \alpha$

ASSUMPTION 2 For all $u \in \Xi$

 $P^u \stackrel{loc}{\ll} P$

f-minimal divergence martingale measure

• Function *f* is a convex conjugate of *U* obtained by Frenchel-Legendre transform of *U*:

$$f(y) = \sup_{x>0} \left(U(x) - yx \right)$$

• Two sets of equivalent martingale measures:

$$\mathcal{M}(\mathbf{G}) = \{ \mathbb{Q} : \mathbb{Q} \stackrel{loc}{\sim} \mathbb{P} \text{ and } S \text{ is } (\mathbb{Q}, \mathbf{G}) \text{-martingale} \}.$$

$$\mathcal{M}^{u}(\mathbf{G}) = \{ Q^{u} : Q^{u} \stackrel{loc}{\sim} P^{u}, S \text{ is } (Q^{u}, \mathbb{F}) \text{-martingale and } \mathbb{Q} \in \mathcal{M}(\mathbf{G}) \}.$$

DEFINITION We say that $Q^{u,*} \in \mathcal{M}^u(\mathbf{G})$ is f-divergence minimal equivalent martingale measure if under $Q^{u,*}$ the process S given $\xi = u$ is a martingale and

$$E_{P^{u}}\left[f\left(\frac{dQ_{T}^{u,*}}{dP_{T}^{u}}\right)\right] = \inf_{Q^{u}} E_{P^{u}}\left[f\left(\frac{dQ_{T}^{u}}{dP_{T}^{u}}\right)\right)\right]$$

・ロト ・四ト ・ヨト ・ヨト

ASSUMPTION 3 For all $u \in \Xi$ there exists the *f*-minimal divergence equivalent martingale measure $Q^{u,*} \in \mathcal{M}^u(\mathbf{G})$, such that

$$\frac{dQ_T^{u,*}}{dP_T^u} = z_T^*(\omega, u), \ z_T^*(\omega, \cdot) \text{ is } \mathcal{F}_T \otimes \mathcal{H} - \text{measurable}$$

and

$$\int_{\Sigma} E_{P^{\boldsymbol{u}}} \big| f(\boldsymbol{z}_{T}^{*}(\boldsymbol{u})) \big| d\alpha(\boldsymbol{u}) < \infty$$

Theorem on existence of *f*-minimal divergence measure

THEOREM 1 Let us suppose that Assumptions 1,2 and 3 hold. Then (i) There exists f-minimal divergence equivalent martingale measure $\mathbb{Q}_T^* \in \mathcal{M}(\mathbf{G})$ such that

$$\frac{d\mathbb{Q}_T^*}{d\mathbb{P}_T}=Z_T^*(\xi),$$

where

 $Z^*_T(\xi) = \lambda(\xi) z^*_T(\xi)$

and $\lambda(\xi)$ is \mathcal{H} -measurable random variable with

$$\int_{\Sigma} \lambda(u) d\alpha(u) = 1.$$

(ii) Moreover,

$$-f'\left(\frac{d\mathbb{Q}_T^*}{d\mathbb{P}_T}\right) = x + g(\xi) + \int_0^T \phi_s^*(\omega,\xi) dS_s, \quad \mathbb{Q}^* - a.s., \tag{1}$$

for some process $\phi^* \in L_{loc}(S, \mathbb{Q}^*)$ such that $\int_0^{\cdot} \phi^*_s(\omega, \xi) dS_s$ is martingale under \mathbb{Q}^* . (iii) The process ϕ^* is solution to the global utility maximisation problem:

$$V(g,x) = E_{\mathbb{P}}\left[U(x+\int_0^T \phi_s^* dS_s + g(\xi))\right].$$

Reduction to conditional utility maximisation problem

From Theorem 1:

$$V(x,g) = E_{\mathbb{P}}\left[U(x+\int_{0}^{T}\phi_{s}^{*}(\xi)\,dS_{s}+g(\xi))\right] = E_{\mathbb{P}}\left[U\left(-f'(Z_{T}^{*}(\xi))\right)\right].$$

Taking the expectation of the RHS given $\xi = u$ we obtain:

$$V(x,g) = \int_{\Sigma} E_{P^{u}} \left[U \left(-f'(Z_{T}^{*}(u)) \right] d\alpha(u) \right]$$
$$= \int_{\Sigma} E_{P^{u}} \left[U \left(-f'(\lambda(u)z_{T}^{*}(u)) \right] d\alpha(u) \right]$$

From Assumption 3 and (ii) of Theorem 5 from Goll and Ruschendorf (2001), it follows that,

$$-f'(\lambda(u)z_T^*(u)) = x + g(u) + \int_0^T \tilde{\phi}^*(u)_s \, dS_s, \tag{2}$$

where $\tilde{\phi}^*(u)$ is an optimal solution for conditional utility optimisation problem Anastasia Ellanskaya (joint work with L. Vostrikova) Utility maximisation and utility indifference price

Dual approach for conditional maximisation problem

Thus,

$$V(x,g) = \int_{\Sigma} E_{Pu} \left[U(x + \int_{0}^{T} \tilde{\phi}^{*}(u)_{s} dS_{s} + g(u)) \right] \alpha(u)$$

=
$$\int_{\Sigma} V^{u}(x,g) d\alpha(u).$$

THEOREM 3 Let us suppose that Assumptions 1,2 and 3 hold, $x > \underline{x}$ and g > 0, then

$$V^{u}(x,g) = E_{P^{u}}\left[U\left(-f'\left(\lambda_{g}(u)\frac{dQ_{T}^{u,*}}{dP_{T}^{u}}\right)\right)\right]$$

and $\lambda_g(u)$ is a unique solution of the equation

$$E_{Q^{u,*}}\left[-f'\left(\lambda_g(u)\frac{dQ_T^{u,*}}{dP_T^u}\right)\right] = x + g(u)$$

HARA utilities and information quantities

We introduce three important quantities related with P_T^u and $Q_T^{u,*}$ namely the entropy of P^u with respect to $Q_T^{u,*}$,

$$\mathbf{I}(P_T^u|Q_T^{u,*}) = -E_{P^u}\left[\ln\left(\frac{dQ_T^{u,*}}{dP_T^u}\right)\right],$$

the entropy of $Q_T^{u,*}$ with respect to P_T^u ,

$$\mathbf{I}(Q_T^{u,*}|P_T^u) = E_{P^u} \left[\frac{dQ_T^{u,*}}{dP_T^u} \ln \left(\frac{dQ_T^{u,*}}{dP_T^u} \right) \right],$$

and Hellinger type integrals

$$\mathbf{H}_{T}^{(q),*}(u) = E_{P^{u}} \left[\left(\frac{dQ_{T}^{u,*}}{dP_{T}^{u}} \right)^{q} \right],$$

where $q = \frac{p}{p-1}$ and p < 1.

Final result for maximisation for HARA utilities

THEOREM 3 Under the Assumptions 1 and 2 we have the following expressions for $V_T(x,g)$:

• If
$$U(x) = \ln x$$
 then

$$V_{\mathcal{T}}(x,g) = \int_{\Xi} \left[\ln(x+g(u)) + \mathbf{I}(P_{\mathcal{T}}^{u}|Q_{\mathcal{T}}^{u,*}) \right] d\alpha(u)$$

• If
$$U(x) = \frac{x^p}{p}$$
 with $p < 1, p \neq 0$ then

$$V_T(x,g) = \frac{1}{p} \int_{\Xi} (x+g(u))^p \left(\mathsf{H}_T^{(q),*}(u)\right)^{1-p} d\alpha(u)$$

• If $U(x) = 1 - e^{-\gamma x}$ with $\gamma > 0$ then

$$V_{\mathcal{T}}(x,g) = 1 - \int_{\Xi} \exp\{-[\gamma(x+g(u)) + \mathsf{I}(\mathcal{Q}_{\mathcal{T}}^{u,*}|\mathcal{P}_{\mathcal{T}}^{u})]\} d\alpha(u)$$

PROPOSITION 5 In the case of the power utility, the buyer's and seller's indifference prices are defined respectively from the equations:

$$\int_{\Xi} \left[\left(1 - \frac{p_T^b}{x} + \frac{g(u)}{x}\right)^p - 1 \right] \left(\mathbf{H}_T^{(q),*}(u) \right)^{1-p} d\alpha(u) = 0$$
(3)

and

$$\int_{\Xi} \left[\left(1 + \frac{p_T^s}{x} - \frac{g(u)}{x} \right)^p - 1 \right] \left(\mathbf{H}_T^{(q),*}(u) \right)^{1-p} d\alpha(u) = 0 \tag{4}$$

(日) (종) (종) (종) (종)

Moreover, under $g(\xi) \in]0, \times[(\alpha \text{-a.s.}) \text{ and some integrability conditions, the above equations have unique solutions.}$

PROPOSITION 6 In the case of the exponential utility the buyer's and seller's indifference prices verify:

$$\rho_{T}^{b} = \frac{1}{\gamma} \ln \left[\frac{\int_{\Xi} \exp\left\{ -\mathbf{I}(Q_{T}^{u,*}|P_{T}^{u}) \right\} d\alpha(u)}{\int_{\Xi} \exp\left\{ -\gamma g(u) - \mathbf{I}(Q_{T}^{u,*}|P_{T}^{u}) \right\} d\alpha(u)} \right]$$
(5)

and

$$p_{T}^{s} = -\frac{1}{\gamma} \ln \left[\frac{\int_{\Xi} \exp\left\{ -\mathbf{I}(Q_{T}^{u,*}|P_{T}^{u}) \right\} d\alpha(u)}{\int_{\Xi} \exp\left\{ \gamma g(u) - \mathbf{I}(Q_{T}^{u,*}|P_{T}^{u}) \right\} d\alpha(u)} \right]$$
(6)

The application $\rho: \mathcal{F}_T \to \mathbb{R}^+$ is convex risk measure if for all contingent claims $C_T^{(1)}, C_T^{(2)} \in \mathcal{F}_T$ and all $0 < \gamma < 1$ we have:

() convexity of ρ with respect to the claims:

$$\rho(\gamma C_{\mathcal{T}}^{(1)} + (1 - \gamma) C_{\mathcal{T}}^{(2)}) \leq \gamma \rho(C_{\mathcal{T}}^{(1)}) + (1 - \gamma)\rho(C_{\mathcal{T}}^{(2)})$$

2 it is increasing function with respect to the claim:

for
$$C_{\mathcal{T}}^{(1)} \leq C_{\mathcal{T}}^{(2)}$$
, we have $ho(C_{\mathcal{T}}^{(1)}) \leq
ho(C_{\mathcal{T}}^{(2)})$

3 it is invariant with respect to the translation: for m > 0

$$\rho(C_T^{(1)} + m) = \rho(C_T^{(1)}) + m$$

PROPOSITION 7 For HARA utilities the indifference prices for sellers $p_T^s(g)$ and $(-p_T^b)$ for buyers are risk measures.

How it works: BS models

Two risky assets

$$S_t^{(1)} = \exp\{(\mu_1 - \frac{\sigma_1^2}{2})t + \sigma_1 W_t^{(1)}\}$$
$$S_t^{(2)} = \exp\{(\mu_2 - \frac{\sigma_2^2}{2})t + \sigma_2 W_t^{(2)}\}$$

with $(W^{(1)}, W^{(2)})$ bi-dimensional standard Brownian motions with correlation ρ , $|\rho| < 1$ on [0, T].

What is ξ?
 ξ = W⁽²⁾_{T'}
 What is X?

$$X_t = \mu_1 t + \sigma_1 W_t^{(1)}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Conditional law of X : Assumption 2

• The conditional law of X given $\xi = u$ coincide with the law of

$$X_t = \mu_1 t + \sigma_1 \rho V_t + \sigma_1 \sqrt{1 - \rho^2} \gamma_t$$

where V is a Brownian bridge starting from 0 at t = 0 and ending in u at t = T' which is independent from Brownian motion γ .

As known,

$$V_t = \int_0^T \frac{u - V_s}{T' - s} ds + \eta_t$$

where η is standard Brownian motion independent from γ .

• Since $\hat{\gamma} = \rho \eta + \sqrt{1 - \rho^2} \gamma$ is again standard Brownian motion, we get:

$$X_t = \mu_1 t + \sigma_1 \rho \int_0^t \frac{u - V_s}{T' - s} ds + \sigma_1 \hat{\gamma_t}$$

• Hence, $P_t^u \ll P_t$ for all $u \in \mathbb{R}$ and $t \in [0, T]$.

Conditional law of ξ : Assumption 1

• We recall that
$$\xi = W_{T'}^{(2)}$$
 and $\mathcal{F}_t = \sigma(W_s^{(1)}, s \leq t)$.

• By Markov property we get: for $A \in \mathcal{B}(\mathbb{R})$

$$P(\xi \,|\, \mathcal{F}_t)(A) = P(W_{T'}^{(2)} \in A \,|\, \mathcal{F}_t) = P(W_{T'}^{(2)} \in A \,|\, W_t^{(1)})$$

$$= P(W_{T'}^{(2)} - W_t^{(2)} + W_t^{(2)} \in A \,|\, W_t^{(1)})$$

Finally,

$$P(\xi | \mathcal{F}_t) = \mathcal{N}(\rho x, T' - \rho^2 t)$$

and since $T' - \rho^2 t \neq 0$ for $t \in [0, T]$, it is equivalent to the law of $W_{T'}^{(2)}$ being $\mathcal{N}(0, T')$.

BS Models and information quantities

PROPOSITION 8 For mentioned three information quantities we have the following result:

$$\mathbf{I}(P^u \mid Q^{*,u}) = \frac{\sigma_1^2}{2} \left[\left(\mu_1 - \frac{\sigma_1 \rho u}{T'} \right)^2 T + \frac{\sigma_1^2 \rho^2}{T'} \left(T' \ln(\frac{T'}{T'-T}) - T \right) \right],$$

$$\begin{split} \mathbf{I}(Q^{*,u} \mid P^{u}) &= \frac{\sigma_{1}^{2}}{2} \left\{ \mu_{1}^{2} T + 2\sigma_{1} \,\mu_{1} \,\rho \,u \,\ln(\frac{T'}{T'-T}) + \sigma_{1}^{2} \rho^{2} \,u^{2} \frac{T}{T'(T'-T)} \right. \\ &+ \sigma_{1}^{2} \rho^{2} \left[\frac{T}{T'-T} - \ln(\frac{T'}{T'-T}) \right] \right\}, \\ \mathbf{H}_{T}^{(q)}(u) &= \left(\frac{T'}{T'-T+qT} \right)^{1/2} \exp\left\{ -\frac{(1-q)}{2} \left[\frac{u^{2}}{T'} - \frac{(u+cT)^{2}}{T'-T+qT} \right] \right\} \end{split}$$

with
$$q>-(rac{T'}{T}-1)$$
 and $c=rac{\mu_{f 1}}{\sigma_{f 1}\,\sqrt{1-
ho^2}}$

Anastasia Ellanskaya (joint work with L. Vostrikova) Utility maximisation and utility indifference price

Example of two independent Levy processes

Two independent geometric Brownian motions such that

$$S_t^{(1)} = \exp\{(\mu_1 - rac{\sigma_1^2}{2})t + \sigma_1 W_t^{(1)}\}$$

$$S_t^{(2)} = \exp\{(\mu_2 - rac{\sigma_2^2}{2})t + \sigma_2 W_t^{(2)}\}$$

- For simplicity of calculations we consider that μ_(·) = 0 and σ_(·) = 1.
- The random variable is a default time $\tau = \inf \{t \in [0, T] : S_t^2 \le a\}$.
- We consider that investor buys the option with payoff function $g(\mathbb{I}_{\tau \leq \tau}) = b\mathbb{I}_{\tau \leq \tau}$.
- Let the initial capital x be equal to 1, then b < 1.
- The distribution of τ is

$$F_{\tau}(t) = \Phi\left(rac{\ln a + rac{T}{2}}{\sqrt{T}}
ight) + rac{1}{a}\Phi\left(rac{\ln a - rac{T}{2}}{\sqrt{T}}
ight).$$

For the defaultable model one gets the following integral equations for the buyer's indifference price:

• In the case of logarithmic utility:

$$\ln\left(1-p_T^b+k\right)F_{\tau}(T)+\ln\left(1-p_T^b\right)\left(1-F_{\tau}(T)\right)=0$$
(7)

• In the case of power utility, $p < 1, p \neq 0$:

$$\left(\left(1-p_{T}^{b}+k\right)^{p-1}-1\right)F_{\tau}(T)-\frac{1}{2}+\left(\left(1-p_{T}^{b}\right)^{p-1}-1\right)\left(1-F_{\tau}(T)\right)=0(8)$$

• In the case of exponential utility, $\gamma > 0$:

$$p_T^b = -\frac{1}{\gamma} \ln\left(e^{-\gamma b} F_\tau(T) + 1 - F_\tau(T)\right) \tag{9}$$

(日) (종) (종) (종) (종)

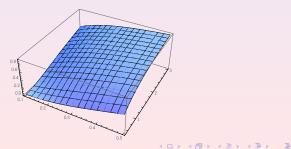
Distribution of τ

We assume $a \in [0.1, 0.5]$ and $T \in [1, 3]$.

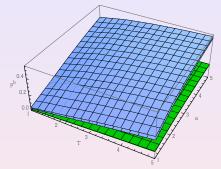
Table: $F_{\tau}(T)$

Case	T = 1	T = 1.5	T = 2	T = 2.5	T = 3
a = 0.1	0.06107412'	0.16589305'	0.27615169	0.37604460'	0.46221476'
a = 0.2	0.22088765	0.37653772'	0.49579569'	0.58641865	0.65635072'
a = 0.3	0.38803513'	0.53980954'	0.64120586'	0.71270390'	0.76533803'
<i>a</i> = 0.4	0.53446163	0.66308077'	0.74286328'	0.79690473	0.83569574'
a = 0.5	0.65623355'	0.7571794'	0.81710178'	0.85673907'	0.88477023'

Figure: The distribution of τ



Exponential indifference prices

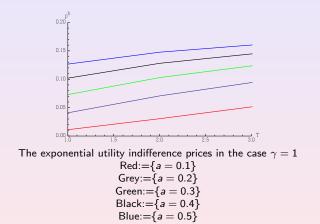


The exponential utility indifference prices for $\gamma \in (0.1, 2)$.

The corresponding values of the axes T and a are from the grid $[5 \times 5]$ of Table 1. The blue sheets corresponds to the case of b = 0.2 and the green sheets to b = 0.6. The different layers of the sheets correspond to the different coefficient of risk aversion $\gamma > 0$.

イロト イヨト イヨト イヨト

Exponential indifference prices



◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

臣

Numerical result for indifference prices

Table: Indifference prices

Case $a = 0.1, b = 0.2$	$p_T^{b,exp}, \ \gamma = 1$	$p_T^{b,log}$	$p_T^{b,1/2}$	$p_{T}^{b,-1/2}$
T = 1	0.0111326	0.0111871	0.0107143	0.00984339
T = 1.5	0.0305353	0.0306383	0.0294511	0.0272343
T = 2	0.0513541	0.0514628	0.0496708	0.0462718
T = 2.5	0.0705999	0.0706757	0.0684823	0.0642565
T = 3	0.0875046	0.087533	0.0851196	0.0804011

J. Amendinger, D. Becherer, M. Schweizer(2002)*A monetary value for initial information in portfolio optimization* Finance and Stochastics 7, 29-46.

- T. R. Bielecki, M. Jeanblanc (2009)*Indifference pricing of defaultable claims.* Appear in Volume on Indifference Pricing, (ed. R. Carmona), Princeton University Press.
- S. Biagini, M. Frittelli, M. Grasselli(2008) *Indifference price with general semimartingales* arXiv:0905.4657v1
- R. Carmona (2009) Indifference pricing. Theory and applications. Princeton University Press.
- T. Goll, L. Ruschendorf (2001) Minimax and minimal distance martingale measures and their relationship to portfolio optimisation. Finance and Stochastics, Vol. V.4, pp. 557-581
- V. Henderson, D. Hobson (2009) The indifference pricing an overview. In "Indifference Pricing : theory and applications", R. Carmona(eds), Princeton University Press.