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Motivations

We study a Robust maximization problem with non entropic term in
two cases :

1 f-divergence penalty studied in the general framework
of a continuous filtration.

2 consistent time penalty studied in the context of a
Brownian filtration.

F. Wahid, A.M, M., Mnif : Robust utility maximization with a
general penalty term. arXiv :1302.0442 (2013).
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We present a problem of utility maximization under model
uncertainty :

sup
π

inf
Q

U(π;Q)

where
π runs through a set of strategies (portfolios, investment,
decisions,...)
Q runs through a set of models Q.
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Various Approaches

HJB approach : Anderson, Hansen and Sargent (2003)
Duality approach : Schied and Wu (2005),H. Follmer and A.
Gundel (2005), Schied(2007),
BSDE approach :
Bordigoni, M. and Schweizer (2007)
Lazrak-Quenez (2003), Quenez (2004) Duffie and Epstein
(1992), Duffie and Skiadas (1994), Skiadas (2003), Schroder
and Skiadas (1999, 2003, 2005)
Laeven and Stadje (2012)
Risk measure : Jouini, Schachermayer and Touzi (2006),
Barrieu and El Karoui (2005)
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Example : Skiadas (1999), Skiadas and Schroder
(2001)

Let us consider an agent with time-additive expected utility over
consumptions paths :

E
[ ∫ T

0
e−δtu(ct)dt].

with respect to some model (Ω,F ,Ft ,P, (Bt)t≥0) where
(Bt)t≥0 is Brownian motion under P.
Suppose that the agent has some preference to use another
model Pθ under which :

Bθ
t = Bt −

∫ t

0
θsds

is a Brownian motion.
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Example

The agent evaluate the distance between the two models in term
of the relative entropy of Pθ with respect to the reference
measure P :

Rθ = Eθ
[ ∫ T

0
e−δt |θt |2dt

]
In this example, our robust control problem will take the form :

V0 := inf
θ

[
Eθ
[ ∫ T

0
e−δtu(ct)dt

]
+ βRθ

]
.

The answer of this problem will be that : V0 = Y0 where Y is
solution of BSDE or recursion equation :

Yt = E
[ ∫ T

t

e−δ(s−t)
(
u(cs)ds −

1
2β

d〈Y 〉s
) ∣∣∣Ft

]
,
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Entropic case : semimartingale setting

- Bordigoni, G. , M.A. and Schweizer, M. (2007) have studied the
following problem :

inf
Q∈Qf

EQ [U0,T + βR0,T := inf
Q∈Qf

Γ(Q)

where
T a finite time horizon.
(Ω,F ,F,P) filtered space under usual conditions.
Possible scenarios given by

Qf := {Q � P Q = P on F0, H(Q|P) = EQ [ln(ZQ
T )] <∞}

The density process of Q with respect to P is the RCLL
P−martingale

ZQ
t =

dQ

dP
|Ft = EP [

dQ

dP
|Ft ]

β a non negative constant : the strength of this penalty term.
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The utility term :

Ut,T = α

∫ T

t

Sδs
Sδt

Usds + ᾱ
SδT
Sδt

ŪT

where :
α and ᾱ are non negative constants
Sδ = (Sδt := e−

∫ t
0 δudu)0≤t≤T discount factor

U = (Ut)0≤t≤T unbounded progressively measurable process
corresponding : the utility rate process which comes from
consumptions.
ŪT is a unbounded FT -measurable random variable : the
terminal utility at time T which corresponds to final wealth.

The penalty term :

Rt,T (Q) =
1
Sδt

∫ T

t

δsS
δ
s ln(

ZQ
s

ZQ
t

)ds +
SδT
Sδt

ln(
ZQ
T

ZQ
t

).
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The case δ = 0

The spacial case δ = 0 corresponds to the cost functional
Γ(Q) = EQ [U0,T ] + βH(Q|P) = βH(Q|PU)− β lnEP [exp(− 1

β
U0,T )]

Where PU ≈ P and dPU
dP

= c exp(− 1
β
U0,T )

Csiszar (1975) have proved the existence and uniqueness of the
optimal measure Q∗ ≈ PU which minimize the relative entropy
H(Q|PU).

I. Csiszar : I-divergence geometry of probability distributions and
minimization problems. Annals of Probability 3, p. 146-158
(1975).
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Functional spaces

Lexp is the space of all FT− measurable random variables X
with EP [exp(γX )] < +∞ ∀ γ > 0.
Dexp

0 is the space of all progressively measurable processes
X = (Xt)0≤t≤T with : EP

[
exp(γess sup

0≤t≤T
|Xt |)

]
<∞ ∀ γ > 0.

Dexp
1 is the space of all progressively measurable processes

X = (Xt)0≤t≤T such that :

EP

[
exp(γ

∫ T

0
|Xs |ds)

]
<∞ ∀ γ > 0.

Mp
0(P) is the space of all P− martingales M = (Mt)0≤t≤T such

that M0 = 0 and

EP [ sup
0≤t≤T

|Mt |p] < +∞.
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Existence result for the entropic case

We define
Vt = ess inf

Q∈Qf

(EQ [Ut,T + βRt,T (Q)]).

Assumptions
(H1) 0 ≤ δt ≤ ‖δ‖∞ for some constant ‖δ‖∞
(H2) U ∈ Dexp

1 and Ū ∈ Lexp

(H3) The filtration F is continuous
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Existence result for the entropic case

Theorem (Bordigoni, A. M. and Schweizer)

1 There exist a unique Q∗ which minimizes Q 7→ Γ(Q) aver all
Q ∈ Qf .

2 The optimal measure Q∗ is equivalent to P .

3 The couple (V ,MV ) is the unique solution in Dexp
0 ×Mp

0(P) of
the BSDE :

dVt = (δtVt − αUt)dt + 1
2βd〈M

V 〉t + dMV
t

VT = ᾱŪ

and the density of the probability measure Q∗ is given by
ZQ∗

t = E(− 1
β
MV

t )
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Existence and uniqueness of solution for BSDE

Existence : based on the Martingale optimality principle
Uniqueness : based on the recursive relation

Vt = −β lnEQ [exp(− 1
β

∫ T

t

(αUs − δsVs)ds)− 1
β
ᾱŪT |Ft ]
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Quadratic BSDE with unbounded terminal
condition

Skiadas, Schröder (2001)
Briand and Hu (2007, 2009)
Barrieu and El Karoui N (2010) : Forward approach based on
quadratic semimartingale.
El Karoui, M., Ngoupeyou. Quadratic BSDE with jumps and
unbounded terminal condition. Preprint 2012.
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The case of f -divergence penalty

The cost functional :

c(ω,Q) := U δ0,T + βRδ
0,T (Q)

inf
Q∈Q

EQ [U0,T + βR0,T (Q)]

where

U δt,T := α

∫ T

t

Sδs Usds + ᾱSδT ŪT

Rt,T (Q) is a penalty term which is written as a sum of a penalty
rate and a final penalty given by :

Rδ
0,T :=

∫ T

0
δsS

δ
s

f (ZQ
s )

ZQ
s

ds + SδT
f (ZQ

T )

ZQ
T

, for all 0 ≤ t ≤ T
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Class of f-divergence penalty

where f : [0,+∞) 7→ R is continuous, strictly convex and satisfies
the following assumptions :

assumption
(H.1) f (1) = 0.
(H.2) There is a constant κ ∈ R+ such that
f (x) ≥ −κ, for all x ∈ (0,+∞).

(H.3) lim
x 7→+∞

f (x)

x
= +∞.
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Class of f-divergence penalty

Our basic goal is to

minimize the functional Q 7→ Γ(Q) := EQ [c(.,Q)]

over a suitable class of probability measures Q � P on FT .
We define the conjugate function of f on R+ by :

f ∗(x) := sup
y>0

(xy − f (y)).
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Functional spaces

Lf
∗ is the space of all FT measurable random variables X with

EP [f ∗ (γ|X |)] <∞ for all γ > 0,

D f ∗
0 is the space of all progressively measurable processes

X = (Xt)0≤t≤T with

EP

[
f ∗
(
γ ess sup0≤t≤T |Xt |

)]
<∞ for all γ > 0,

D f ∗
1 is the space of all progressively measurable processes

X = (Xt)0≤t≤T such that

EP

[
f ∗
(
γ

∫ T

0
|Xs |ds

)]
<∞ for all γ > 0.
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f -divergence

Definition
For any probability measures Q on (Ω,F), we define the f -divergence
of Q with respect to P by :

d(Q|P) :=

{
EP [f (dQ

dP
|FT

)] if Q � P on FT

+∞ otherwise .

We denote by Qf the space of all probability measures Q on
(Ω,F) with Q � P on FT , Q = P on F0 and d(Q|P) < +∞.
The set Qe

f is defined as follows

Qe
f := {Q ∈ Qf |Q ≈ P on FT}.
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Assumption
(A1) The process δ is positive and bounded by ‖δ‖∞ .
(A2) The process U belongs to D f ∗

1 and the random variable ŪT is
in Lf

∗

Remark
In the case of entropic penalty, we have f (x) = x ln(x) and then
f ∗(x) = exp(x − 1). As in Bordigoni, M. and Schweizer (2007), the
integrability conditions are formulated as

EP

[
exp(γ

∫ T

0
|U(s)|ds)

]
< +∞ and EP

[
exp(γ|ŪT |)

]
< +∞ ∀γ > 0.
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Existence of optimal probability measure

proposition
Under (A1)-(A2),for all Q ∈ Q; we have

1 c(.,Q) ∈ L1(Q)

2 Γ(Q) ≤ C (1 + d(Q|P)) for some a constant C ∈ (0,+∞) which
depends only on α, ᾱ, β, δ,T ,U , Ū .

3 There exists a positive constant K which depends only on
α, ᾱ, β, δ,T ,U , Ū such that

d(Q|P) ≤ K (1 + Γ(Q)).

In particular inf
Q∈Qf

Γ(Q) > −∞.

In particular Γ(Q) is well-defined and finite for every Q ∈ Qf
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Existence of optimal probability measure

Theorem
Under (A1)-(A2), there exists a unique Q∗ ∈ Qf which minimizes
Q 7→ Γ(Q) over all Q ∈ Qf .

(A3) f is differentiable on (0,+∞) and f ′(0) = lim
x→0+

f ′(x) = −∞.

Theorem
Under the Assumptions (A1)-(A3), the optimal probability measure
Q∗ is equivalent to P .
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Bellman optimality principle

Let S denote the set of all F -stopping times τ with values in [0,T ]
and D the space of all density processes ZQ with Q ∈ Qf . We define

D(Q, τ) := {ZQ′ ∈ D;Q = Q ′ on Fτ}

Γ(τ,Q) := EQ [c(.,Q)|Fτ ]

and the minimal conditional cost at time τ ,

J(τ,Q) := Q - essinf
Q′∈D(Q,τ)

Γ(τ,Q ′).

Then
inf

Q∈Qf

Γ(Q) = inf
Q∈Qf

EQ [c(.,Q)] = EP [J(0;Q)]
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Proposition (Bellman optimality principle)

1 The family {J(τ,Q)|τ ∈ S,Q ∈ Qf } is a submartingale system.
2 Q∗ ∈ Qf is optimal ⇔ {J(τ,Q∗)|τ ∈ S} is a martingale system.
3 For all Q ∈ Qf there is an adapted RCLL process
JQ = (JQ

t )0≤t≤T which is a right closed Q-submartingale such
that : JQ

τ = J(τ,Q) Q-a.s for each stopping time τ.

Recursive representation and BSDE ? : still open questions ?
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Setting

(Ft)0≤t≤T is generated by a d-dimensional Brownian motion W .
Q � P on FT .

The density process of Q with respect to P is a RCLL
martingale ZQ = (ZQ

t )0≤t≤T given by :

ZQ
t = E(

∫ t

0
ηudWu) Q.p.s,∀t ∈ [0,T ].

We consider a deterministic function h defined on Rd such that
there are two positive constants κ1 and κ2 satisfying :

h(x) ≥ κ1‖x‖2 − κ2.
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The penalty term is defined by

Rδ
t,T (Qη) =

∫ T

t

δs
Sδs
Sδt

(

∫ s

t

h(ηu)du)ds +
SδT
Sδt

∫ T

t

h(ηu)du.

for Q � P on FW
T .

As in the case of f -divergence penalty, we have to solve the
following optimization problem :

minimize the functionalQη 7→ Γ(Qη) := EQη [c(.,Qη)]
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Definition
For all probability measure Qη on (Ω,F), we define the penalty
function :

γt(Q
η) :=

 EQη [

∫ T

t

h(ηs)ds|Ft ] if Qη � P onFT

+∞ otherwise
.

We note Qc
f the space of all probability measures Qη on (Ω,F) such

that Qη � P on FT and γ0(Qη) < +∞ and
Qc,e

f := {Qη ∈ Qf |Q ≈ P onFT}.
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Remark

1 We note that Qc,e
f is non empty set because P ∈ Qc,e

f .

2 The particular case of h(x) = 1
2 |x |

2 corresponds to the entropic
penalty.

3 For a general function h we have for all Qη ∈ Qc
f ,

H(Qη|P) ≤ 1
2κ1

γ0(Qη) +
Tκ2

2κ1
.
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Assumption
(A’2) : the cost process U belongs to Dexp

1 and the terminal target
Ū is in Lexp

Remark
Under Assumption (A’2), we have

λ

∫ T

0
|Us |ds + µ|ŪT | ∈ Lexp, for all (λ, µ) ∈ R2

+.
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Theorem
Assume that (A1)-(A’2) are satisfied. Then there exists a probability
measure Qη∗ ∈ Qc

f minimizing Qη 7→ Γ(Qη) over all Qη ∈ Qc
f .

Theorem
Under the assumptions (A1)-(A’2), the pair (V ,Z ) is the unique
solution in Dexp

0 ×Hp
d , p ≥ 1, of the following BSDE : dYt = (δtYt − αUt + h∗(

1
β
Zt))dt − ZtdWt ,

YT = α′U ′T .

and Q∗ is equivalent to P .
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Comparison with related result

In the case of the entropic penalty, which corresponds to
h(x) = 1

2 |x |
2, the value process is described through the

backward stochastic differential equation : dYt = (δtYt − αUt +
1
2β
|Z |2t )dt − ZtdWt

YT = α′U ′T

.

These results are obtained by Schroder and Skiadas (2003)
where α′ = 0.
Dynamic concave utility : Delbaen, Hu and Bao (2009) treated
the case δ = 0 and ξ = α′U ′ is bounded and β = 1.
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Comparison with related result

In this special case the existence of an optimal probability was
shown by Jouini, Schachermayer and Touzi’s work (2005).
Delbaen et al. showed (using a different method) that the
dynamic concave utility

Yt = ess inf
Q∈Qf

E [ξ +

∫ T

t

h(ηu)du|Ft ]

satisfies the following BSDE :{
dYt = h∗(Zt)dt − ZtdWt

YT = ξ
.
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The model

We consider a filtered probability space (Ω,G,G,P). All the
processes are taken G-adapted, and are defined on the time
interval [0,T ].

Any special G-semimartingale Y admits a canonical
decomposition Y = Y0 + A + MY ,c + Y Y ,d where A is a
predictable finite variation process, Y c is a continuous
martingale and MY ,d is a pure discontinuous martingale.

For each i = 1, . . . , n, H i is a counting process and there exist a
positive adapted process λi , called the P intensity of H i , such
that the process N i with N i

t := H i
t −
∫ t

0 λ
i
sds is a martingale.

We assume that the processes H i , i = 1, . . . , d have no common
jumps.
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The model

Any discontinuous martingale admits a representation of the

dMY ,d
t =

d∑
i=1

Ŷ i
t dN

i
t

where Ŷ i , i = 1, . . . , d are predictable processes.
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Semimartingale BSDE with jumps

Definition
A solution of the BSDE is a triple of processes (Y ,MY ,c , Ŷ ) such
that Y is a P-semimartingale, M is a locally square-integrable locally
martingale with M0 = 0 and Ŷ = (Ŷ 1, · · · , Ŷ d) a Rd -valued
predictable locally bounded process such that :

dYt = [
d∑

i=1

g(Ŷ i
t )λit − Ut + δtYt ]dt +

1
2
d〈MY ,c〉t + dMY ,c

t

+
d∑

i=1

Ŷ i
t dN

i
t

YT = ŪT

(1)

where g(x) = e−x + x − 1.
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Existence result

Theorem (Jeanblanc, M., M. A., Ngoupeyou A.)

There exists a unique triple of process
(Y ,MY ,c , Ŷ ) ∈ Dexp

0 ×M0,loc(P)× L2(λ) solution of the
semartingale BSDE with jumps.

Furthermore, the optimal measure Q∗ solution of our
minimization problem is given :

dZQ∗
t = ZQ∗

t− dL
Q∗
t , ZQ∗

0 = 1

where

dLQ
∗

t = −dMY ,c
t +

d∑
i=1

(
e−Ŷ

i
t − 1

)
dN i

t .
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The model :example from Credit Risk

Example

We assume that G is the filtration generated by a continuous
reference filtration F and d positive random times τ1, · · · , τd
which are the default times of d firms : G = (Gt)t≥0 where

Gt =
⋂
ε>0

Ft+ε ∨ σ(τ1 ∧ t + ε) ∨ σ(τ2 ∧ t + ε) · · · ∨ σ(τd ∧ t + ε)

where σ(τi ∧ t + ε) is the generated σ-fields which is non
random before the default times τi for each i = 1, · · · , d .
we note H i

t = 1{τi≤t}.
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The model :example from Credit Risk

Example

We assume that each τi is G-totaly inaccessible and there exists
a positive G-adapted process λi such that, the process N i with
N i

t := H i
t −
∫ t

0 λ
i
sds is a G-martingale.

Obviously, the process λi is null after the default time τi .
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The model :example from Credit Risk

Example

From Kusuoka, the representation of the discontinuous
martingale MY ,d with respect to N i holds true when the
filtration G is generated by a Brownian motion and the default
processes under (H) hypothesis.
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Questions ?

Thank you for your attention !
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