Robust maximization problem with non-entropic penalty term

Anis Matoussi

University of Maine (Le Mans, France) and CMAP, Ecole Polytechnique (Palaiseau, France)

Institut du Risque et de l'Assurance (du Mans)

Advanced methods in Mathematical Finance Angers, September 3-6, 2013

Outline

1 Introduction

- 2 Entropic penalty case
- 3 The *f*-divergence penalty case
- 4 The Consistent time penalty case

Motivations

We study a Robust maximization problem with non entropic term in two cases :

- **1** f-divergence penalty studied in the general framework of a continuous filtration.
- 2 consistent time penalty studied in the context of a Brownian filtration.
- F. Wahid, A.M, M., Mnif: Robust utility maximization with a general penalty term. arXiv :1302.0442 (2013).

▲ 同 ▶ ▲ 国 ▶ ▲

Outline

1 Introduction

- 2 Entropic penalty case
- 3 The *f*-divergence penalty case
- 4 The Consistent time penalty case

5 The jump case

We present a problem of utility maximization under model uncertainty :

 $\sup_{\pi} \inf_{Q} U(\pi; Q)$

where

- π runs through a set of strategies (portfolios, investment, decisions,...)
- Q runs through a set of models Q.

Various Approaches

- **HJB** approach : Anderson, Hansen and Sargent (2003)
- Duality approach : Schied and Wu (2005), H. Follmer and A. Gundel (2005), Schied(2007),
- BSDE approach : Bordigoni, M. and Schweizer (2007) Lazrak-Quenez (2003), Quenez (2004) Duffie and Epstein (1992), Duffie and Skiadas (1994), Skiadas (2003), Schroder and Skiadas (1999, 2003, 2005) Laeven and Stadje (2012)
- Risk measure : Jouini, Schachermayer and Touzi (2006), Barrieu and El Karoui (2005)

• □ ▶ • • □ ▶ • • □ ▶ •

Example : Skiadas (1999), Skiadas and Schroder (2001)

Let us consider an agent with time-additive expected utility over consumptions paths :

$$\mathbb{E}\Big[\int_0^T e^{-\delta t} u(c_t) dt\Big].$$

with respect to some model $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P}, (B_t)_{t \ge 0})$ where $(B_t)_{t \ge 0}$ is Brownian motion under \mathbb{P} .

Suppose that the agent has some preference to use another model \mathbb{P}^{θ} under which :

$$B_t^{ heta} = B_t - \int_0^t heta_s ds$$

is a Brownian motion.

Example

The agent evaluate the distance between the two models in term of the relative entropy of P^θ with respect to the reference measure P :

$$\mathcal{R}^{ heta} = \mathbb{E}^{ heta} igg[\int_0^T e^{-\delta t} | heta_t|^2 dt igg]$$

In this example, our robust control problem will take the form :

$$V_0 := \inf_{ heta} \Big[\mathbb{E}^{ heta} \Big[\int_0^T e^{-\delta t} u(c_t) dt \Big] + eta \mathcal{R}^{ heta} \Big].$$

• The answer of this problem will be that : $V_0 = Y_0$ where Y is solution of BSDE or recursion equation :

$$Y_t = \mathbb{E}\Big[\int_t^T e^{-\delta(s-t)} \big(u(c_s)ds - \frac{1}{2\beta}d\langle Y \rangle_s\big) \ \Big|\mathcal{F}_t\Big],$$

Outline

1 Introduction

- 2 Entropic penalty case
- 3 The *f*-divergence penalty case
- 4 The Consistent time penalty case

5 The jump case

Entropic case : semimartingale setting

- Bordigoni, G. , M.A. and Schweizer, M. (2007) have studied the following problem :

$$\inf_{Q\in\mathcal{Q}_f} E_Q[\mathcal{U}_{0,T} + \beta \mathcal{R}_{0,T} := \inf_{Q\in\mathcal{Q}_f} \Gamma(Q)$$

where

- **T** a finite time horizon.
- $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ filtered space under usual conditions.
- Possible scenarios given by

$$\mathcal{Q}_{\mathsf{f}} := \{ Q \ll P \; Q = P \; \; \textit{on} \; \; \mathcal{F}_0, \; \; \; \mathcal{H}(Q|P) = E_Q[\mathsf{ln}(Z^Q_{\mathcal{T}})] < \infty \}$$

 The density process of Q with respect to P is the RCLL P-martingale

$$Z_t^Q = \frac{dQ}{dP}|_{F_t} = E_P[\frac{dQ}{dP}|F_t]$$

 \blacksquare β a non negative constant : the strength of this penalty term. $_{aaa}$ The utility term :

$$\mathcal{U}_{t,T} = \alpha \int_{t}^{T} \frac{S_{s}^{\delta}}{S_{t}^{\delta}} U_{s} ds + \bar{\alpha} \frac{S_{T}^{\delta}}{S_{t}^{\delta}} \bar{U}_{T}$$

where :

- $\blacksquare \ \alpha \ {\rm and} \ \bar{\alpha}$ are non negative constants
- $S^{\delta} = (S^{\delta}_t := e^{-\int_0^t \delta_u du})_{0 \le t \le T}$ discount factor
- U = (U_t)_{0≤t≤T} unbounded progressively measurable process corresponding : the utility rate process which comes from consumptions.
- \overline{U}_T is a unbounded \mathcal{F}_T -measurable random variable : the terminal utility at time T which corresponds to final wealth.

The penalty term :

$$\mathcal{R}_{t,T}(Q) = \frac{1}{S_t^{\delta}} \int_t^T \delta_s S_s^{\delta} \ln(\frac{Z_s^Q}{Z_t^Q}) ds + \frac{S_T^{\delta}}{S_t^{\delta}} \ln(\frac{Z_T^Q}{Z_t^Q}).$$

The case $\delta = 0$

The spacial case $\delta = 0$ corresponds to the cost functional $\Gamma(Q) = E_Q[\mathcal{U}_{0,T}] + \beta H(Q|P) = \beta H(Q|P_U) - \beta \ln E_P[\exp(-\frac{1}{\beta}\mathcal{U}_{0,T})]$ Where $P_U \approx P$ and $\frac{dP_U}{dP} = c \exp(-\frac{1}{\beta}\mathcal{U}_{0,T})$

- Csiszar (1975) have proved the existence and uniqueness of the optimal measure Q^{*} ≈ P_U which minimize the relative entropy H(Q|P_U).
- I. Csiszar : I-divergence geometry of probability distributions and minimization problems. Annals of Probability 3, p. 146-158 (1975).

Functional spaces

- L^{\exp} is the space of all $\mathcal{F}_{\mathcal{T}}$ measurable random variables X with $E_{\mathcal{P}}[\exp(\gamma X)] < +\infty \quad \forall \quad \gamma > 0.$
- D_0^{\exp} is the space of all progressively measurable processes $X = (X_t)_{0 \le t \le T}$ with $: E_P \Big[\exp(\gamma \exp \sup_{0 \le t \le T} |X_t|) \Big] < \infty \quad \forall \quad \gamma > 0.$
- D_1^{exp} is the space of all progressively measurable processes $X = (X_t)_{0 \le t \le T}$ such that :

$$E_P\left[\exp(\gamma\int_0^{+}|X_s|ds)\right]<\infty \,\,\forall\,\,\gamma>0.$$

• $\mathcal{M}_0^p(P)$ is the space of all \mathbb{P} - martingales $M = (M_t)_{0 \le t \le T}$ such that $M_0 = 0$ and

$$E_P[\sup_{0\leq t\leq T}|M_t|^p]<+\infty.$$

Existence result for the entropic case

We define

$$V_t = ess \inf_{Q \in \mathcal{Q}_f} (E_Q[\mathcal{U}_{t,T} + \beta \mathcal{R}_{t,T}(Q)]).$$

Assumptions

(H1)
$$0 \le \delta_t \le \|\delta\|_{\infty}$$
 for some constant $\|\delta\|_{\infty}$
(H2) $U \in D_1^{exp}$ and $\overline{U} \in L^{exp}$
(H3) The filtration \mathbb{F} is continuous

< A > <

Existence result for the entropic case

Theorem (Bordigoni, A. M. and Schweizer)

- **1** There exist a unique Q^* which minimizes $Q \mapsto \Gamma(Q)$ aver all $Q \in \mathcal{Q}_f$.
- **2** The optimal measure Q^* is equivalent to P.
- 3 The couple (V, M^V) is the unique solution in D₀^{exp} × M₀^p(P) of the BSDE :

$$\begin{cases} dV_t = (\delta_t V_t - \alpha U_t) dt + \frac{1}{2\beta} d\langle M^V \rangle_t + dM_t^V \\ V_T = \bar{\alpha} \bar{U} \end{cases}$$

and the density of the probability measure Q^* is given by $Z^{Q^*}_t=\mathcal{E}(-\frac{1}{\beta}M^V_t)$

Existence and uniqueness of solution for BSDE

- Existence : based on the Martingale optimality principle
- Uniqueness : based on the recursive relation

$$V_t = -\beta \ln \mathbb{E}_Q[\exp(-\frac{1}{\beta}\int_t^T (\alpha U_s - \delta_s V_s) ds) - \frac{1}{\beta} \bar{\alpha} \bar{U}_T | \mathcal{F}_t]$$

Quadratic BSDE with unbounded terminal condition

- Skiadas, Schröder (2001)
- Briand and Hu (2007, 2009)
- Barrieu and El Karoui N (2010) : Forward approach based on quadratic semimartingale.
- El Karoui, M., Ngoupeyou. Quadratic BSDE with jumps and unbounded terminal condition. Preprint 2012.

Outline

1 Introduction

- 2 Entropic penalty case
- 3 The *f*-divergence penalty case
- 4 The Consistent time penalty case

5 The jump case

The case of *f*-divergence penalty

The cost functional :

$$c(\omega, Q) := \mathcal{U}_{0,T}^{\delta} + \beta \mathcal{R}_{0,T}^{\delta}(Q)$$

$$\inf_{Q\in\mathcal{Q}}E_Q[\mathcal{U}_{0,T}+\beta\mathcal{R}_{0,T}(Q)]$$

where

$$\mathcal{U}_{t,T}^{\delta} := \alpha \int_{t}^{T} S_{s}^{\delta} U_{s} ds + \bar{\alpha} S_{T}^{\delta} \bar{U}_{T}$$

■ $\mathcal{R}_{t,T}(Q)$ is a penalty term which is written as a sum of a penalty rate and a final penalty given by :

$$\mathcal{R}_{0,T}^{\delta} := \int_{0}^{T} \delta_{s} S_{s}^{\delta} \frac{f(Z_{s}^{Q})}{Z_{s}^{Q}} ds + S_{T}^{\delta} \frac{f(Z_{T}^{Q})}{Z_{T}^{Q}}, \text{ for all } 0 \leq t \leq T$$

Class of f-divergence penalty

where $f : [0, +\infty) \mapsto \mathbb{R}$ is continuous, strictly convex and satisfies the following assumptions :

assumption

(H.1)
$$f(1) = 0$$
.
(H.2) There is a constant $\kappa \in \mathbb{R}_+$ such that $f(x) \ge -\kappa$, for all $x \in (0, +\infty)$.
(H.3) $\lim_{x \mapsto +\infty} \frac{f(x)}{x} = +\infty$.

Class of f-divergence penalty

Our basic goal is to

minimize the functional $Q \mapsto \Gamma(Q) := E_Q[c(.,Q)]$

over a suitable class of probability measures $Q \ll P$ on \mathcal{F}_T . • We define the conjugate function of f on \mathbb{R}_+ by :

$$f^*(x) := \sup_{y>0} (xy - f(y)).$$

Functional spaces

• L^{f^*} is the space of all \mathcal{F}_T measurable random variables X with

$${\it E_P}\left[{f^* \left({\gamma |X|}
ight)}
ight] < \infty \qquad {
m for all } \gamma > 0,$$

■ $D_0^{f^*}$ is the space of all progressively measurable processes $X = (X_t)_{0 \le t \le T}$ with

$${\it E_{P}}\left[f^{*}\left(\gamma \ {
m ess} \ {
m sup}_{0\leq t\leq {\cal T}}|X_{t}|
ight)
ight]<\infty$$
 for all $\gamma>0,$

• $D_1^{f^*}$ is the space of all progressively measurable processes $X = (X_t)_{0 \le t \le T}$ such that

$$E_P\left[f^*\left(\gamma\int_0^T|X_s|ds
ight)
ight]<\infty$$
 for all $\gamma>0.$

f-divergence

Definition

For any probability measures Q on (Ω, \mathcal{F}) , we define the *f*-divergence of Q with respect to P by :

$$d(Q|P) := \begin{cases} E_P[f(\frac{dQ}{dP}|_{\mathcal{F}_T})] & \text{if } Q \ll P \text{ on } \mathcal{F}_T \\ +\infty & \text{otherwise} \end{cases}$$

We denote by Q_f the space of all probability measures Q on (Ω, F) with Q ≪ P on F_T, Q = P on F₀ and d(Q|P) < +∞.
The set Q^e_f is defined as follows

$$\mathcal{Q}_f^e := \{ Q \in \mathcal{Q}_f | Q \approx P \text{ on } \mathcal{F}_T \}.$$

Assumption

(A1) The process δ is positive and bounded by $\|\delta\|_{\infty}$. (A2) The process U belongs to $D_1^{f^*}$ and the random variable \bar{U}_T is in L^{f^*}

Remark

In the case of entropic penalty, we have $f(x) = x \ln(x)$ and then $f^*(x) = \exp(x - 1)$. As in Bordigoni, M. and Schweizer (2007), the integrability conditions are formulated as

$$\mathbb{E}_{P}\left[\exp(\gamma\int_{0}^{T}|U(s)|ds)\right]<+\infty \text{ and } \mathbb{E}_{P}\left[\exp(\gamma|\bar{U}_{T}|)\right]<+\infty \ \forall \gamma>0$$

イロト イポト イヨト イヨト

Existence of optimal probability measure

proposition

Under (A1)-(A2), for all $Q \in Q$; we have

- 1 $c(., Q) \in L^1(Q)$
- 2 $\Gamma(Q) \leq C(1 + d(Q|P))$ for some a constant $C \in (0, +\infty)$ which depends only on $\alpha, \bar{\alpha}, \beta, \delta, T, U, \bar{U}$.
- **3** There exists a positive constant *K* which depends only on $\alpha, \bar{\alpha}, \beta, \delta, T, U, \bar{U}$ such that

$$d(Q|P) \leq K(1 + \Gamma(Q)).$$

In particular $\inf_{Q \in Q_f} \Gamma(Q) > -\infty$.

In particular $\Gamma(Q)$ is well-defined and finite for every $Q\in\mathcal{Q}_f$

Existence of optimal probability measure

Theorem

Under (A1)-(A2), there exists a unique $Q^* \in Q_f$ which minimizes $Q \mapsto \Gamma(Q)$ over all $Q \in Q_f$.

(A3) f is differentiable on $(0, +\infty)$ and $f'(0) = \lim_{x \to 0^+} f'(x) = -\infty$.

Theorem

Under the Assumptions (A1)-(A3), the optimal probability measure Q^* is equivalent to P.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bellman optimality principle

Let S denote the set of all \mathcal{F} -stopping times τ with values in [0, T]and \mathcal{D} the space of all density processes Z^Q with $Q \in Q_f$. We define

$$\mathcal{D}(\boldsymbol{Q}, au) := \{ Z^{\boldsymbol{Q}'} \in \mathcal{D}; \boldsymbol{Q} = \boldsymbol{Q}' ext{ on } \mathcal{F}_{ au} \}$$

 $\Gamma(\tau, Q) := E_Q[c(., Q)|\mathcal{F}_{\tau}]$

and the minimal conditional cost at time $\boldsymbol{\tau}$,

$$J(\tau, Q) := Q - \operatorname*{essinf}_{Q' \in \mathcal{D}(Q, \tau)} \Gamma(\tau, Q').$$

Then

$$\inf_{Q\in\mathcal{Q}_f} \Gamma(Q) = \inf_{Q\in\mathcal{Q}_f} E_Q[c(.,Q)] = E_P[J(0;Q)]$$

Proposition (Bellman optimality principle)

- **1** The family $\{J(\tau, Q) | \tau \in S, Q \in Q_f\}$ is a submartingale system.
- 2 $Q^* \in Q_f$ is optimal $\Leftrightarrow \{J(\tau, Q^*) | \tau \in S\}$ is a martingale system.
- **3** For all $Q \in Q_f$ there is an adapted RCLL process $J^Q = (J_t^Q)_{0 \le t \le T}$ which is a right closed Q-submartingale such that : $J_{\tau}^Q = J(\tau, Q)$ Q-a.s for each stopping time τ .

Recursive representation and BSDE? : still open questions?

Outline

1 Introduction

- 2 Entropic penalty case
- 3 The *f*-divergence penalty case
- 4 The Consistent time penalty case

5 The jump case

Anis Matoussi

Setting

- $(\mathcal{F}_t)_{0 \le t \le T}$ is generated by a *d*-dimensional Brownian motion *W*. $Q \ll P$ on \mathcal{F}_T .
- The density process of Q with respect to P is a RCLL martingale Z^Q = (Z^Q_t)_{0≤t≤T} given by :

$$Z_t^Q = \mathcal{E}(\int_0^t \eta_u dW_u) \ Q.p.s, \forall t \in [0, T].$$

We consider a deterministic function h defined on R^d such that there are two positive constants κ₁ and κ₂ satisfying :

$$h(x) \geq \kappa_1 \|x\|^2 - \kappa_2.$$

The penalty term is defined by

$$\mathcal{R}_{t,T}^{\delta}(Q^{\eta}) = \int_{t}^{T} \delta_{s} \frac{S_{s}^{\delta}}{S_{t}^{\delta}} (\int_{t}^{s} h(\eta_{u}) du) ds + \frac{S_{T}^{\delta}}{S_{t}^{\delta}} \int_{t}^{T} h(\eta_{u}) du.$$

for $Q \ll P$ on \mathcal{F}_T^W .

As in the case of *f*-divergence penalty, we have to solve the following optimization problem :

minimize the functional $Q^{\eta} \mapsto \Gamma(Q^{\eta}) := E_{Q^{\eta}}[c(.,Q^{\eta})]$

Definition

For all probability measure Q^{η} on (Ω, \mathcal{F}) , we define the penalty function :

$$\gamma_t(Q^{\eta}) := \begin{cases} E_{Q^{\eta}}[\int_t^T h(\eta_s) ds | \mathcal{F}_t] & \text{if } Q^{\eta} \ll P \text{ on } \mathcal{F}_T \\ +\infty & \text{otherwise} \end{cases}$$

We note \mathcal{Q}_f^c the space of all probability measures Q^η on (Ω, \mathcal{F}) such that $Q^\eta \ll P$ on \mathcal{F}_T and $\gamma_0(Q^\eta) < +\infty$ and $\mathcal{Q}_f^{c,e} := \{Q^\eta \in \mathcal{Q}_f | Q \approx P \text{ on } \mathcal{F}_T\}.$

Remark

- **1** We note that $\mathcal{Q}_{f}^{c,e}$ is non empty set because $P \in \mathcal{Q}_{f}^{c,e}$.
- 2 The particular case of $h(x) = \frac{1}{2}|x|^2$ corresponds to the entropic penalty.
- **3** For a general function h we have for all $Q^\eta \in \mathcal{Q}_f^c$,

$$H(Q^\eta|P) \leq rac{1}{2\kappa_1}\gamma_0(Q^\eta) + rac{T\kappa_2}{2\kappa_1}.$$

Assumption

(A'2) : the cost process U belongs to D_1^{\exp} and the terminal target \bar{U} is in L^{\exp}

Remark

Under Assumption (A'2), we have

$$\lambda \int_0^T |U_s| ds + \mu |\overline{U}_T| \in L^{exp}$$
, for all $(\lambda, \mu) \in \mathbb{R}^2_+$.

< ∃ >

Theorem

Assume that (A1)-(A'2) are satisfied. Then there exists a probability measure $Q^{\eta^*} \in Q_f^c$ minimizing $Q^{\eta} \mapsto \Gamma(Q^{\eta})$ over all $Q^{\eta} \in Q_f^c$.

Theorem

Under the assumptions (A1)-(A'2), the pair (V, Z) is the unique solution in $D_0^{exp} \times \mathcal{H}_d^p$, $p \ge 1$, of the following BSDE :

$$\left\{ egin{array}{l} dY_t = (\delta_t Y_t - lpha U_t + h^* (rac{1}{eta} Z_t)) dt - Z_t dW_t, \ Y_{\mathcal{T}} = lpha' U_{\mathcal{T}}'. \end{array}
ight.$$

and Q^* is equivalent to P.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Comparison with related result

In the case of the entropic penalty, which corresponds to h(x) = ½|x|², the value process is described through the backward stochastic differential equation :

$$\begin{cases} dY_t = (\delta_t Y_t - \alpha U_t + \frac{1}{2\beta} |Z|_t^2) dt - Z_t dW_t \\ Y_T = \alpha' U'_T \end{cases}$$

These results are obtained by Schroder and Skiadas (2003) where $\alpha' = 0$.

Dynamic concave utility : Delbaen, Hu and Bao (2009) treated the case δ = 0 and ξ = α'U' is bounded and β = 1.

Comparison with related result

- In this special case the existence of an optimal probability was shown by Jouini, Schachermayer and Touzi's work (2005).
- Delbaen et al. showed (using a different method) that the dynamic concave utility

$$Y_t = ess \inf_{Q \in \mathcal{Q}_f} E[\xi + \int_t^T h(\eta_u) du | \mathcal{F}_t]$$

satisfies the following BSDE :

$$\left\{ egin{array}{l} dY_t = h^*(Z_t)dt - Z_t dW_t \ Y_{\mathcal{T}} = \xi \end{array}
ight.$$

Outline

1 Introduction

- 2 Entropic penalty case
- 3 The *f*-divergence penalty case
- 4 The Consistent time penalty case

5 The jump case

Anis Matoussi

The model

- We consider a filtered probability space (Ω, G, C, P). All the processes are taken G-adapted, and are defined on the time interval [0, T].
- Any special G-semimartingale Y admits a canonical decomposition Y = Y₀ + A + M^{Y,c} + Y^{Y,d} where A is a predictable finite variation process, Y^c is a continuous martingale and M^{Y,d} is a pure discontinuous martingale.
- For each i = 1, ..., n, H^i is a counting process and there exist a positive adapted process λ^i , called the \mathbb{P} intensity of H^i , such that the process N^i with $N_t^i := H_t^i \int_0^t \lambda_s^i ds$ is a martingale.
- We assume that the processes Hⁱ, i = 1, ..., d have no common jumps.

The model

Any discontinuous martingale admits a representation of the

$$dM_t^{Y,d} = \sum_{i=1}^d \hat{Y}_t^i dN_t^i$$

where \hat{Y}^{i} , i = 1, ..., d are predictable processes.

Anis Matoussi

Robust maximization problem

Semimartingale BSDE with jumps

Definition

A solution of the BSDE is a triple of processes $(Y, M^{Y,c}, \widehat{Y})$ such that Y is a *P*-semimartingale, M is a locally square-integrable locally martingale with $M_0 = 0$ and $\widehat{Y} = (\widehat{Y}^1, \dots, \widehat{Y}^d)$ a \mathbb{R}^d -valued predictable locally bounded process such that :

$$\begin{cases} dY_t = \left[\sum_{i=1}^d g(\widehat{Y}_t^i)\lambda_t^i - U_t + \delta_t Y_t\right] dt + \frac{1}{2} d\langle M^{Y,c} \rangle_t + dM_t^{Y,c} \\ + \sum_{i=1}^d \widehat{Y}_t^i dN_t^i \\ Y_T = \overline{U}_T \end{cases}$$
(1)

where
$$g(x) = e^{-x} + x - 1$$
.

Existence result

Theorem (Jeanblanc, M., M. A., Ngoupeyou A.)

- There exists a unique triple of process $(Y, M^{Y,c}, \widehat{Y}) \in D_0^{exp} \times \mathcal{M}_{0,loc}(P) \times \mathcal{L}^2(\lambda)$ solution of the semartingale BSDE with jumps.
- Furthermore, the optimal measure Q* solution of our minimization problem is given :

$$dZ_t^{\mathbb{Q}^*} = Z_{t^-}^{\mathbb{Q}^*} dL_t^{\mathbb{Q}^*}, \quad Z_0^{\mathbb{Q}^*} = 1$$

where

$$dL_t^{\mathbb{Q}^*} = -dM_t^{Y,c} + \sum_{i=1}^d \left(e^{-\widehat{Y}_t^i} - 1\right) dN_t^i.$$

The model :example from Credit Risk

Example

We assume that G is the filtration generated by a continuous reference filtration F and d positive random times τ₁,..., τ_d which are the default times of d firms : G = (G_t)_{t>0} where

$$\mathcal{G}_t = \bigcap_{\epsilon > 0} \mathcal{F}_{t+\epsilon} \lor \sigma(\tau_1 \land t + \epsilon) \lor \sigma(\tau_2 \land t + \epsilon) \cdots \lor \sigma(\tau_d \land t + \epsilon)$$

where σ(τ_i ∧ t + ε) is the generated σ-fields which is non random before the default times τ_i for each i = 1, · · · , d.
we note Hⁱ_t = 1_{τ_i≤t}.

The model :example from Credit Risk

Example

- We assume that each τ_i is G-totaly inaccessible and there exists a positive G-adapted process λ^i such that, the process N^i with $N_t^i := H_t^i \int_0^t \lambda_s^i ds$ is a G-martingale.
- Obviously, the process λ^i is null after the default time τ_i .

The model :example from Credit Risk

Example

From Kusuoka, the representation of the discontinuous martingale M^{Y,d} with respect to Nⁱ holds true when the filtration G is generated by a Brownian motion and the default processes under (H) hypothesis.

Questions?

Thank you for your attention !

Robust maximization problem