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Outline of the talk

I- Motivation of the problem
• Preliminary notations
• The switching problem : Presentation and review of existing
literature
• The switching game : formulation and objectives

II- Study of the related system of variational inequalities
• Main system : presentation and first (comparison) result
• Presentation of approximating schemes :
• Existence of continuous viscosity solutions (Perron’s
method)

III- The switching game
• Preliminaries : Min-max and Max-min PDEs and connection
with zero sum Dynkin games
• The main result : characterization of the value function
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Presentation of the problem

Introduction : Setting and notations

On a standard probability space,

I W : standard d-dim. Brownian Motion,

I X diffusion process s.t. dXt = b(t,Xt)dt + σ(t,Xt)dWt

+ standard conditions on b, σ,

I T finite horizon + J = {1, · · · ,m} set of possible modes.

1. Ψi (s,Xs) : instantaneous profit (generated in mode i , i in J )

2. hi (XT ) : fixed payoff (or terminal condition) at time T ,

3. g
i ,k

(s,Xs) : nonnegative penalty costs incurred at time s

when system switches from i to k .
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Review on standard switching problem

Presentation

I Ai : set of admissible strategies α := (τp, ip) τ0 = 0, i0 = i
satisfying both

P({∀ p ∈ N, τp < T}) = 0

and AT (α) =
∑

p≥0 gip ,ip+1(τp,Xτp)1τp<T square integrable.

I Profit functional (associated with α)

J i (α) = E

hi (XT ) +

∫ T

0

∑
p≥0

Ψip(s,Xs)1s∈[τp ,τp+1[ds − AT (α)

 .
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Review on standard switching problem

Presentation

I Dynamic version of switching problem (t given in [0,T ])
At,i : set of admissible strategies s.t. τ0 = t, i0 = i
For any α in At,i , we define

J i (t, α) = EFt

hi (X t,x
T ) +

∫ T

t

∑
p≥0

Ψip(r ,X t,x
r )1r∈[τp ,τp+1[dr − At,T


with At,T =

∑
p≥0

gip ,ip+1(τp,X
t,x
τp )1t≤τp<T .

I Objectives of switching problem
• Characterize Vi = vi (t, x) = ess supα∈At,i J i (t, α),
• Identify and construct α∗ achieving the supremum (in At,i ).
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Review on standard switching problem

The switching problem : the BSDE approach

I The general m modes switching problem :
Define (Y i )i∈{1,..,m} = Rm-valued process s.t.

(S)



Y i ,K i , Z i and K inon-decreasing and K i
0 = 0;

Y i
s = hi (X t,x

T ) +
∫ T
s Ψi (r ,X t,x

r ,Y 1
r , . . . ,Y

m
r ,Z

i
r )dr

+ K i
T − K i

s −
∫ T
s Z i

r dBr , ∀ s ≤ T

Y i
s ≥ maxk 6=i{Y k

s − g
i ,k

(s,X t,x
s )}, ∀s ≤ T∫ T

0 (Y i
s −maxk 6=i{Y k

s − g
i ,k

(s,X t,x
s )})dK i

s = 0.

(1)
(S) : system of m reflected BSDEs with interconnected lower
obstacle.
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Review on standard switching problem

List of hypotheses for the data of the RBSDE system

H1 Ψi is uniformly Lipschitz continuous w.r.t.
(−→y , z i ) := (y 1, ..., ym, z i ),
(s, x) 7→ Ψi (s, x , 0, 0) has at most polynomial growth (w.r.t
x) (it belongs to the class Πg )

H2 Monotonicity ∀i ∈ J , ∀k ∈ J \ i , the mapping
yk ∈ R 7→ Ψi (t, x , y1, ..., yk−1, yk , yk+1, ..., ym) is
non-decreasing whenever (t, x , y1, ..., yk−1, yk+1, ..., ym) are
fixed.

H3 (i) gij is jointly continuous in (t, x), non-negative and belongs
to Πg ;
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Review on standard switching problem

List of hypotheses (continued)

H3 Non free loop property (ii) for any (t, x) ∈ [0,T ]× Rk and
for any sequence i1, ..., ik such that i1 = ik and
card{i1, ..., ik} = k − 1 we have :

gi1i2(t, x) + gi2i3(t, x) + · · ·+ gik−1ik (t, x) + gik i1(t, x) > 0,

∀(t, x) ∈ [0,T ]× Rk .

H4 hi is continuous, belongs to Πg and satisfies :

∀x ∈ R, hi (x) ≥ max
j∈J\i

(hj(x)− gij((T , x)).
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Review on standard switching problem

First result for the switching problem

Under assumptions (Hi)i=1,··· ,4, there exists m triples
(Y i ,Z i ,K i )i satisfying (S).
In addition the following representation holds

∀ t ∈ [0,T ] Y i
t = ess supα∈At,i J(t, α),

the optimal admissible strategy α∗ = (τ∗p , i
∗
p ) exists s.t.

τ∗0 = t, τ∗p = inf{u > τ∗p−1, Y i
u = max

k 6=i

(
Y k
u − g

i ,k
(u,X t,x

u )
)
}

and

i∗0 = i , i∗p = Argmax{k , Y
i∗p−1

τ∗p
= max

(
Y k
τ∗p
− g

i ,k
(τ∗p ,X

t,x
τ∗p

)
)
}
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Solution of the switching problem

Second result for the switching problem

In the Markovian setting (i.e. when randomness of Ψi , (hi )i∈J
and ((g

i ,k
)k 6=i ) comes from X = X t,x)

the family (vi : (t, x) 7→ Y i ,t,x
t )i∈J is the unique continuous

viscosity solution of
min

{
vi (t, x)− max

j∈J−i
(−gi ,j(t, x) + vj(t, x)) ;

−∂tvi (t, x)− LX vi (t, x)−Ψi (t, x , (vl(t, x))l , (σ
>.Dxvi )(t, x))

}
= 0;

vi (T , x) = hi (x).
(2)

with
Lϕ(t, x) = b(t, x)TDxϕ(t, x) + 1

2Tr(σσ
T (t, x)Dxxϕ(t, x)),

for ϕ in C1,2([0,T ]× R).
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The switching problem : Review of existing results

2.1 First studies : Two-modes switching problem (constant
penalty costs or non random data). Dixit (1987), Zervos
(2006) Ludkowski (phD thesis 2005)

2.2 Generalizations :
• Relationship between the 2-modes switching problem and an
explicit doubly reflected BSDE (Hamadène-Jeanblanc - 2002)

• The multi-modal switching problem : Connection with
system of obliquely reflected BSDEs
Hu-Tang (2007), Hamadène-Djehiche-Popier (2008),
Ma-Pham-Kharroubi (2008)
Hamadène Zhang (2010), Elie Kharroubi (2009, 10)
Chassagneux-Elie-Kharroubi (2011) Hamadene Morlais (2012)
.

• Numerical aspects : Ludkowski, Elie-Kharroubi (2010)
Bernhard (phD 2011)
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Presentation of the switching game

Same brownian setting, T fixed time horizon, set of modes
Γ = Γ1 × Γ2

The gain functional

Assume that
Player 1 has strategy α = (ik , σk),
Player 2 has strategy β = (jk , τk)
s.t. system is in state (ik , jk) during [νk , νk+1[, (i0, j0) = (i , j) then

J i ,j(α, β) = E
(

h(XT ) +
∫ T

0

∑
k≥0 Ψik ,jk (s,Xs)1s∈[νk ,νk+1[ds

)
−
∑

k≥1

(
g
ik−1,ik

1{νk= σk ,νk<T} − ḡjk−1,jk 1{νk=τk , νk<T}

)
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Presentation of the switching game

Objectives of the switching game

(i) Justifying existence to the value function V = V i ,j

V i ,j = sup
α∈Ai

inf
β∈Bj

J i ,j(α, β) = inf
β

sup
α

J i ,j(α, β)

(ii) Characterizing an optimal mixed strategy (when it exists !) as
a saddle point

∀ (α, β), J i ,j(α, β∗) ≤ J i ,j(α∗, β∗) ≤ J i ,j(α∗, β)
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Second part : Related system of variational inequalities

2.1 Main system : presentation and the comparison result

2.2 Presentation of two approximating schemes and main result

2.3 Existence of continuous viscosity solution (Perron’s method)
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Study of related system of variational inequalities

The main system

For any (i , j) ∈ Γ1 × Γ2
min

{ (
v i ,j − Li ,j [~v ]

)
(t, x) ;

max
{(

v i ,j − U i ,j [~v ]
)
(t, x);

−∂tv i ,j(t, x)− Lv i ,j(t, x)−Ψi ,j(t, x , (vk,l(t, x)))
}}

= 0
v i ,j(T , x) = hi ,j(x)

(3)
where for any (t, x),

Lϕ(t, x) = b(t, x)Dxϕ(t, x) +
1

2
Tr[σσT (t, x)D2

xxϕ(t, x)],

Li ,j [~v ](t, x) := max
k∈(Γ1)−i

(vk,j(t, x)− g
i ,k

(t, x))

U i ,j [~v ](t, x) = min
l∈(Γ2)−j

(v i ,l(t, x) + ḡj ,l(t, x)).
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Study of related system of variational inequalities

The main system : hypotheses

1. for any (i , j), Ψi ,j Lipschitz w.r.t. ~y (uniformly in (t, x , z),

2. Monotonicity : for (k , l) 6= (i , j), yk,l 7→ Ψi ,j(t, x , ~y) non
decreasing,

3. Ψi ,j may depend on ~z only through z i ,j .

4. Constraints on terminal conditions

max
k∈(Γ1)−i

(hk,j(x)− g
i ,k

(T , x)) ≤ hi ,j(x) ≤ min
l∈(Γ2)−j

(hi ,l(x) + ḡj ,l(T , x)).

5. + Technical conditions on penalty costs (g
i ,k

)k 6=i and

(ḡj ,l)l 6=j .
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Study of related system of variational inequalities

The main system : hypotheses

Hypothesis on the families of penalty costs
For any loop in Γ, any (i1, j1), ..., (iN , jN) of Γ such that
(iN , jN) = (i1, j1), card{(i1, j1), ..., (iN , jN)} = N − 1 and
∀ q = 1, ...,N − 1, either iq+1 = iq or jq+1 = jq, then ∀(t, x),∑

q=1,N−1

ϕiq ,iq+1(t, x) 6= 0, (4)

where either ∀ q = 1, ...,N − 1,
ϕiq ,iq+1(t, x) = −g

iq ,iq+1
(t, x)1iq 6=iq+1 + ḡjq ,iq+1(t, x)1jq 6=jq+1

or ϕiq ,iq+1(t, x) = g
iq ,iq+1

(t, x)1iq 6=iq+1 − ḡjq ,iq+1(t, x)1jq 6=jq+1).
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Study of related system of variational inequalities

Notions of viscosity sub-supersolution of (3)

Definition :
u = (ui ,j) : viscosity subsolution of (3) if u is usc and, if for
t < T and any (pu, qu,Mu) in J̄ +(ui ,j(t, x)),

min
{ (

v i ,j − Li ,j [~v ]
)
(t, x) ; ; max

{(
v i ,j − U i ,j [~v ]

)
(t, x);

−pu − qub(t, x)− 1
2Tr

(
σσTMu

)
−Ψi ,j(t, x , (vk,l(t, x)))

}}
≤ 0,

(5)
and v i ,j(T , x) ≤ hi ,j(x), for t = T .
(v i ,j) : supersolution of (3) if v lsc and if (5) holds for any
(pv , qv ,Mv ) in J̄ −(v i ,j(t, x)) replacing ≤ by ≥.
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Study of related system of variational inequalities

The comparison result

The comparison result Assume that u = (ui ,j) (resp :
w = (w i ,j)) is a subsolution of (3) (is a supersolution of (3)),
If, in addition both u and w are in class Πg

∃ C , γ > 0, ∀ (t, x), |ui ,j(t, x)|+ |w i ,j(t, x)| ≤ C (1 + |x |γ),
then

∀t ∈ [0,T [, ∀ (i , j) ui ,j(t, x) ≤ w i ,j(t, x).

⇒ there exists at most one continuous viscosity solution in
the class Πg .
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Study of related system of variational inequalities

Auxiliary system of variational inequalities

For any (i , j) ∈ Γ = Γ1 × Γ2 we introduce
max

{ (
v i ,j − U i ,j [~v ]

)
(t, x) ;

min
{(

v i ,j − Li ,j [~v ]
)
(t, x);

−∂tv i ,j(t, x)− Lv i ,j(t, x)−Ψi ,j(t, x , (vk,l(t, x)))
}}

= 0
v i ,j(T , x) = hi ,j(x)

(6)

Li ,j [~v ](t, x) := max
k∈(Γ1)−i

(vk,j(t, x)− g
i ,k

(t, x))

U i ,j [~v ](t, x) = min
l∈(Γ2)−j

(v i ,l(t, x) + ḡj ,l(t, x)).
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Study of related system of variational inequalities

First approximating scheme

∀ (i , j) ∈ Γ = Γ1 × Γ2,


min{v̄ i ,j ,m(t, x)− max

k∈(Γ1)−i
(v̄k,j ,m(t, x)− g

i ,k
(t, x));

−∂t v̄ i ,j ,m(t, x)− Lv̄ i ,j ,m(t, x)− Ψ̄i ,j ,m(t, x , (v̄k,l ,m(t, x)))} = 0,
v̄ i ,j ,m(T , x) = hi ,j(x)

(7)

Li ,j ,m(~̄v) = max
k∈(Γ1)−i

(v̄k,j ,m(t, x)− g
i ,k

(t, x))

U i ,j ,m(~̄v) = min
l∈(Γ2)−j

(v i ,l ,m(s, x) + ḡj ,l(s, x)

Ψ̄i ,j ,m(t, x , (yk,l)) = Ψi ,j(t, x , (yk,l))−m
(
y i ,j− min

l∈(Γ2)−j
(y i ,l+ḡj ,l(t, x))

)+
.
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Study of related system of variational inequalities

Second approximating scheme

∀ (i , j) ∈ Γ = Γ1 × Γ2,


max{v i ,j ,n(t, x)− min

l∈(Γ2)−j
(v i ,l ,n(t, x) + ḡj ,l(t, x));

−∂tv i ,j ,n(t, x)− Lv i ,j ,n(t, x)−Ψi ,j ,n(t, x , (vk,l ,n(t, x)))} = 0,
v i ,j ,n(T , x) = hi ,j(x)

(8)
with

Ψi ,j ,n(t, x , (yk,l)) = Ψi ,j(t, x , y i ,j) + n
(

max
k∈(Γ1)−i

(yk,j − g
i ,k

(t, x)
)
− y i ,j

)+
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Study of related system of variational inequalities

Identification of the limit of the two schemes

Theorem : viscosity characterization of the limit
• For each m, (v̄ i ,j ,m)i ,j : value of some standard switching
problem,
limm ↘ v̄ i ,j ,m = v̄ i ,j , with v̄ i ,j : is usc and a (viscosity)
solution to system (3).
• For each n (v i ,j ,n) coincides (up to a sign) with value of
standard switching problem.
lim↗ v i ,j ,n = v i ,j with v i ,j lsc and a (viscosity) solution to
system (6).
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Study of related system of variational inequalities

Perron’s method : existence of viscosity solution for systems
(3) and (6)

Theorem
Suppose that system (3) satisfies the comparison theorem.
If besides there exist both v = (v i ,j) which is lsc and a
supersolution of (3) and v̄ which is usc and a subsolution of (3)
then

∃ u = (ui ,j) s.t. v̄ i ,j ≤ ui ,j ≤ v i ,j ,

with u which is continuous and a viscosity solution of (3).
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Identification of the limit of the two schemes

Sketches of the proofs

I First claim : v̄ i ,j viscosity solution of (3)

I Step 1 : Prove that v̄ i,j : subsolution of (3) and, for each m0,
v i,j,m0 : supersolution

I Step 2 : Set v i,j,(m0) :=
sup{ṽ i,j subsolution s.t. v̄ i,j ≤ ṽ i,j ≤ v i,j,m0}

I Step 3 : By uniqueness of viscosity solution, we get v i,j = v̄ i,j

I Second claim : v i ,j viscosity solution of (6).
Main idea : replace v by −v , verify that −v satisfies a new
system of the same type as (3) and mimic the previous
argumentation.
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Third part : the switching game

2.1 Preliminaries : Min-max and Max-min PDEs and connection
with zero sum Dynkin games

2.2 Identification of the value of the game

2.3 Conclusion
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Min-max and Max-min PDEs and connection with
zero-sum Dynkin games

I Let consider a Brownian setting (finite horizon T ) + X strong
solution of

dX t,x
s = b(s,X t,x

s )ds + σ(s,X t,x
s )dWs , ∀ s ∈ [t,T ]

and L its infinitesimal generator

I l(t, x), h(t, x) and g(x) continuous functions of Πg such that

l(t, x) ≤ h(t, x) and l(T , x) ≤ g(x) ≤ h(T , x)

I f (t, x , y , z) R-valued function, Lipschitz in (y , z), in Πg and
continuous in (t, x) (uniformly w.r.t (y , z)).
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Min-max and Max-min PDEs and connection with
zero-sum Dynkin games

Let us now consider the following PDE with bilateral obstacles

min{(u−l)(t, x), max{(u−h)(t, x), −∂tu−Lu−f (t, x , u, (σTDxu))}}
(9)

Theorem (Hamadene-Hassani 05)

There exists u := u(t, x) a continuous function of the class Πg

which is the unique viscosity solution of system (9).
Besides u(t, x) is also solution of

max{(u−h)(t, x), min{(u−l)(t, x), −∂tu−Lu−f (t, x , u, (σTDxu))}}
(10)
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The switching game : existence of the value of the game

Theorem
Assuming that
(i) The generators Ψi ,j do not depend on z and satisfies

∀ (s, x , ~y) |Ψi ,j(s, x , ~y)| ≤ C (1 + |x |γ).

(ii) the family (ḡj ,l) of penalty costs are Itô processes, i.e.

dḡj ,l(s) = ūj ,l
s ds + v̄ j ,l

s dWs , with ūj ,l and v̄ j ,l s.t.

E
(∫ T

0 |ū
j ,l
s |2ds

)
<∞, and E

(∫ T
0 |v̄

j ,l
s |2ds

)
<∞,

• the two obstacles associated with v̄ i ,j of system (3) are separated
i.e. Li ,j(v̄) ≤ U i ,j(v̄)
• The two solutions (v̄ i ,j) and (v i ,j) associated with systems (3)
and (6) coincide.
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The switching game : existence of the value of the game

Theorem
Under the additional assumption that the generator Ψi ,j

(modelizing instantaneous profit in mode (i , j)) does not depend
on (~y , z) we also claim that

v̄ i ,j = v i ,j = V i ,j ,

with

V i ,j = ess infβ∈Bt,j ess supα∈At,i
J(α, β) = ess supα∈At,i

ess infβ∈Bt,j J(α, β)

which is the value of the switching game.
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Thanks for your attention !
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