Conference "Advanced methods in mathematical finance"

General switching game and related system of Variational inequalities

Marie-Amélie Morlais (LMM, Le Mans) J.w.w. Said Hamadène (LMM) and B. Djehiche (KTH Stockholm)

September 2013

Marie-Amélie Morlais (LMM, Le Mans) J.w.w. Said Hamadène [Conference "Advanced methods in mathematical finance"](#page-30-0)

Outline of the talk

- I- Motivation of the problem
	- Preliminary notations
	- The switching problem : Presentation and review of existing literature
	- The switching game: formulation and objectives
- II- Study of the related system of variational inequalities
	- Main system : presentation and first (comparison) result
	- Presentation of approximating schemes :
	- Existence of continuous viscosity solutions (Perron's method)
- III- The switching game
	- Preliminaries : Min-max and Max-min PDEs and connection with zero sum Dynkin games
	- The main result : characterization of the value function

Introduction : Setting and notations

On a standard probability space,

- \triangleright W : standard d-dim. Brownian Motion,
- \blacktriangleright X diffusion process s.t. $dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t$ $+$ standard conditions on b, σ ,
- \blacktriangleright T finite horizon $+ \mathcal{J} = \{1, \cdots, m\}$ set of possible modes.
- 1. $\Psi^i(s,X_s)$: instantaneous profit (generated in mode *i*, *i* in \mathcal{J})
- 2. $h^i(X_T)$: fixed payoff (or terminal condition) at time T ,
- 3. $\underline{g}_{i,k}(s,X_s)$: nonnegative penalty costs incurred at time s when system switches from i to k .

Presentation

 \blacktriangleright \mathcal{A}^i : set of admissible strategies $\alpha := (\tau_p, \; i_p) \; \tau_0 = 0, \; i_0 = i$ satisfying both

$$
\mathbb{P}(\{\forall p\in\mathbb{N},\ \tau_p
$$

and $A_{\mathcal{T}}(\alpha)=\sum_{p\geq 0} \textit{g}_{\textit{i}_p,\textit{i}_{p+1}}(\tau_p,X_{\tau_p})\textbf{1}_{\tau_p<\mathcal{T}}$ square integrable.

Profit functional (associated with α **)**

$$
J^{i}(\alpha) = \mathbb{E}\left(h^{i}(X_{\mathcal{T}}) + \int_{0}^{\mathcal{T}} \sum_{\rho \geq 0} \Psi^{i_{\rho}}(s, X_{s}) \mathbf{1}_{s \in [\tau_{\rho}, \tau_{\rho+1}]} ds - A_{\mathcal{T}}(\alpha)\right).
$$

Presentation

 \triangleright Dynamic version of switching problem (t given in [0, T]) $\mathcal{A}^{t,i}$: set of admissible strategies s.t. $\tau_0=t$, $i_0=i$ For any α in $\mathcal{A}^{t,i}$, we define

$$
J^i(t,\alpha)=\mathbb{E}_{\mathcal{F}_t}\left(h^i(X_\mathcal{T}^{t,x})+\int_t^\mathcal{T}\sum_{\rho\geq 0}\Psi^{i_\rho}(r,X_r^{t,x})\mathbf{1}_{r\in[\tau_p,\tau_{p+1}[}dr-A_{t,\mathcal{T}})\right)
$$

with
$$
A_{t,T} = \sum_{p\geq 0} g_{i_p,i_{p+1}}(\tau_p, X_{\tau_p}^{t,x}) \mathbf{1}_{t \leq \tau_p < T}.
$$

 \triangleright Objectives of switching problem

- Characterize $V_i = v_i(t, x) = \text{ess sup}_{\alpha \in A^{t, i}} J^i(t, \alpha)$,
- Identify and construct α^* achieving the supremum (in $\mathcal{A}^{t,i}$).

The switching problem : the BSDE approach

 \blacktriangleright The general m modes switching problem : Define $(Y^{i})_{i\in\{1,\dots,m\}}=\mathbb{R}^m$ -valued process s.t.

$$
\begin{cases}\nY^i, K^i, Z^i \text{ and } K^i \text{non-decreasing and } K^i_0 = 0; \\
Y^i_s = h_i(X^{t,x}_T) + \int_s^T \Psi_i(r, X^{t,x}_r, Y^1_r, \dots, Y^m_r, Z^i_r) dr \\
+ K^i_T - K^i_s - \int_s^T Z^i_r dB_r, \forall s \le T \\
Y^i_s \ge \max_{k \ne i} \{ Y^k_s - \underline{g}_{i,k}(s, X^{t,x}_s) \}, \forall s \le T \\
\int_0^T (Y^i_s - \max_{k \ne i} \{ Y^k_s - \underline{g}_{i,k}(s, X^{t,x}_s) \}) dK^i_s = 0. \\
\text{(1)} \\
\text{S} \cdot \text{system of } m \text{ reflected BSDEs with interconnected lower}\n\end{cases}
$$

 (S) : system of m reflected BSDEs with interconnected obstacle.

List of hypotheses for the data of the RBSDE system

- **H1** Ψ_i is uniformly Lipschitz continuous w.r.t. $(\overrightarrow{y},z^i):=(y^1,...,y^m,z^i),$ $(s, x) \mapsto \Psi_i(s, x, 0, 0)$ has at most polynomial growth (w.r.t x) (it belongs to the class Π^g)
- **H2** Monotonicity $\forall i \in \mathcal{J}, \forall k \in \mathcal{J} \setminus i$, the mapping $y_k \in \mathbb{R} \mapsto \Psi_i(t, x, y_1, ..., y_{k-1}, y_k, y_{k+1}, ..., y_m)$ is non-decreasing whenever $(t, x, y_1, ..., y_{k-1}, y_{k+1}, ..., y_m)$ are fixed.
- **H3** (i) g_{ii} is jointly continuous in (t, x) , non-negative and belongs to $\mathsf{\Pi}^{\mathcal{B}}$;

List of hypotheses (continued)

H3 Non free loop property (ii) for any $(t, x) \in [0, T] \times \mathbb{R}^k$ and for any sequence $i_1, ..., i_k$ such that $i_1 = i_k$ and $card\{i_1, ..., i_k\} = k - 1$ we have :

$$
g_{i_1i_2}(t,x)+g_{i_2i_3}(t,x)+\cdots+g_{i_{k-1}i_k}(t,x)+g_{i_ki_1}(t,x)>0,
$$

 $\forall (t, x) \in [0, T] \times \mathbb{R}^k$.

H4 h_i is continuous, belongs to Π^g and satisfies :

$$
\forall x \in \mathbb{R}, \quad h_i(x) \geq \max_{j \in \mathcal{J} \setminus i} (h_j(x) - g_{ij}((\mathcal{T}, x)).
$$

Review on standard switching problem

First result for the switching problem

Under assumptions $(Hi)_{i=1,\cdots,4}$, there exists m triples $(Y^i, Z^i, K^i)_i$ satisfying $(\mathcal{S}).$ In addition the following representation holds

 $\forall~t\in[0,\, \mathcal{T}] \;\; \mathcal{Y}^i_t = \text{ess sup}_{\alpha \in \mathcal{A}^{t,i}} J(t,\alpha),$

the optimal admissible strategy $\alpha^* = (\tau_p^*, i_p^*)$ exists s.t.

 $\tau_0^* = t, \ \tau_p^* = \inf\{u > \tau_{p-1}^*, \ Y_u^i = \max_{k \neq i} \left(Y_u^k - \underline{g}_{i,k}(u, X_u^{t,x}) \right) \}$

and

$$
i_0^* = i, \ i_p^* = \text{Argmax}\{k, \ Y_{\tau_p^*}^{i_{p-1}^*} = \max\big(Y_{\tau_p^*}^k - \underline{g}_{i,k}(\tau_p^*, X_{\tau_p^*}^{t,x})\big)\}
$$

Marie-Amélie Morlais (LMM, Le Mans) J.w.w. Said Hamadène (Conference "Advanced methods in mathematical finance

Solution of the switching problem

Second result for the switching problem

In the Markovian setting (i.e. when randomness of Ψ_i , $(h_i)_{i\in\mathcal{J}}$ and $\bigl((\underline{\mathcal{g}}_{i,k})_{k\neq i} \bigr)$ comes from $X=X^{t, x})$ the family $(v_i:(t,x)\mapsto Y^{i,t,x}_t)_{i\in\mathcal{J}}$ is the unique continuous viscosity solution of

$$
\min \left\{ v_i(t,x) - \max_{j \in \mathcal{J}^{-i}} (-g_{i,j}(t,x) + v_j(t,x)) ; -\partial_t v_i(t,x) - \mathcal{L}^X v_i(t,x) - \Psi_i(t,x, (v_i(t,x)), (\sigma^{\top}.D_x v_i)(t,x)) \right\}
$$

$$
v_i(\tau,x) = h_i(x).
$$

(2)

with

 $\sqrt{ }$ \int

 $\overline{\mathcal{L}}$

$$
\mathcal{L}\varphi(t,x) = b(t,x)^T D_x \varphi(t,x) + \frac{1}{2} \text{Tr}(\sigma \sigma^T(t,x) D_{xx} \varphi(t,x)),
$$

for φ in $\mathcal{C}^{1,2}([0,T] \times \mathbb{R}).$

The switching problem : Review of existing results

- 2.1 First studies : Two-modes switching problem (constant penalty costs or non random data). Dixit (1987), Zervos (2006) Ludkowski (phD thesis 2005)
- 2.2 Generalizations :

.

• Relationship between the 2-modes switching problem and an explicit doubly reflected BSDE (Hamadène-Jeanblanc - 2002)

• The multi-modal switching problem : Connection with system of obliquely reflected BSDEs Hu-Tang (2007), Hamadène-Djehiche-Popier (2008), Ma-Pham-Kharroubi (2008) Hamadène Zhang (2010), Elie Kharroubi (2009, 10) Chassagneux-Elie-Kharroubi (2011) Hamadene Morlais (2012)

• Numerical aspects : Ludkowski, Elie-Kharroubi (2010) Bernhard (phD 2011)

Same brownian setting, T fixed time horizon, set of modes $\Gamma = \Gamma^1 \times \Gamma^2$

The gain functional

Assume that Player 1 has strategy $\alpha = (i_k, \sigma_k)$, Player 2 has strategy $\beta = (i_k, \tau_k)$ s.t. system is in state (i_k, j_k) during $[\nu_k, \nu_{k+1}], (i_0, j_0) = (i, j)$ then

$$
J^{i,j}(\alpha,\beta) = \mathbb{E}\left(h(X_{T}) + \int_0^T \sum_{k\geq 0} \Psi^{i_k,j_k}(s,X_s) \mathbf{1}_{s \in [\nu_k,\nu_{k+1}]} ds\right) - \sum_{k\geq 1} \left(\underline{g}_{i_{k-1},i_k} \mathbf{1}_{\{\nu_k = \sigma_k,\nu_k < T\}} - \overline{g}_{j_{k-1},j_k} \mathbf{1}_{\{\nu_k = \tau_k,\nu_k < T\}}\right)
$$

Objectives of the switching game

(i) Justifying existence to the value function $V = V^{i,j}$

$$
V^{i,j} = \sup_{\alpha \in \mathcal{A}^i} \inf_{\beta \in \mathcal{B}^j} J^{i,j}(\alpha, \beta) = \inf_{\beta} \sup_{\alpha} J^{i,j}(\alpha, \beta)
$$

(ii) Characterizing an optimal mixed strategy (when it exists !) as a saddle point

$$
\forall (\alpha, \beta), \quad J^{i,j}(\alpha, \beta^*) \leq J^{i,j}(\alpha^*, \beta^*) \leq J^{i,j}(\alpha^*, \beta)
$$

Second part : Related system of variational inequalities

2.1 Main system : presentation and the comparison result

Presentation of two approximating schemes and main result 2.3 Existence of continuous viscosity solution (Perron's method)

Marie-Amélie Morlais (LMM, Le Mans) J.w.w. Said Hamadène [Conference "Advanced methods in mathematical finance"](#page-0-0)

Study of related system of variational inequalities

The main system For any $(i,j)\in\mathsf{\Gamma}^1\times\mathsf{\Gamma}^2$

$$
\begin{cases}\n\min \left\{ \left(v^{i,j} - L^{i,j}[\vec{v}] \right) (t, x) ; \\
\max \left\{ \left(v^{i,j} - U^{i,j}[\vec{v}] \right) (t, x) ; \\
-\partial_t v^{i,j} (t, x) - \mathcal{L} v^{i,j} (t, x) - \Psi^{i,j} (t, x, (v^{k,l}(t, x))) \right\} \right\} = 0 \\
v^{i,j}(T, x) = h_{i,j}(x)\n\end{cases}
$$
\n(3)

where for any (t, x) ,

$$
\mathcal{L}\varphi(t,x) = b(t,x)D_x\varphi(t,x) + \frac{1}{2}\text{Tr}[\sigma\sigma^{\mathcal{T}}(t,x)D_{xx}^2\varphi(t,x)],
$$

$$
L^{i,j}[\vec{v}](t,x) := \max_{k \in (\Gamma^1)^{-i}} (\nu^{k,j}(t,x) - \underline{g}_{i,k}(t,x))
$$

$$
U^{i,j}[\vec{v}](t,x) = \min_{l \in (\Gamma^2)^{-j}} (\nu^{i,l}(t,x) + \overline{g}_{j,l}(t,x)).
$$

Marie-Amélie Morlais (LMM, Le Mans) J.w.w. Said Hamadène [Conference "Advanced methods in mathematical finance"](#page-0-0)

The main system : hypotheses

- 1. for any (i, j) , $\Psi^{i,j}$ Lipschitz w.r.t. \vec{v} (uniformly in (t, x, z)),
- 2. Monotonicity : for $(k, l) \neq (i, j)$, $y^{k, l} \mapsto \Psi^{i, j}(t, x, \vec{y})$ non decreasing,
- 3. $\Psi^{i,j}$ may depend on \vec{z} only through $z^{i,j}$.
- 4. Constraints on terminal conditions

$$
\max_{k \in (\Gamma^1)^{-i}} (h^{k,j}(x) - \underline{\mathbf{g}}_{i,k}(T,x)) \leq h^{i,j}(x) \leq \min_{l \in (\Gamma^2)^{-j}} (h^{i,l}(x) + \overline{\mathbf{g}}_{j,l}(T,x))
$$

 $5.$ $+$ Technical conditions on penalty costs $(\underline{\mathcal{g}}_{i,k})_{k\neq i}$ and $(\bar{g}_{j,l})_{l\neq j}$.

Study of related system of variational inequalities

The main system : hypotheses

Hypothesis on the families of penalty costs For any loop in Γ , any $(i_1, j_1), ..., (i_N, j_N)$ of Γ such that $(i_N, j_N) = (i_1, j_1)$, card $\{(i_1, j_1), ..., (i_N, j_N)\} = N - 1$ and $\forall q = 1, ..., N - 1$, either $i_{q+1} = i_q$ or $j_{q+1} = j_q$, then $\forall (t, x)$,

$$
\sum_{q=1,N-1} \varphi_{i_q,i_{q+1}}(t,x) \neq 0,
$$
 (4)

where either $\forall q = 1, ..., N - 1$, $\varphi_{i_q,i_{q+1}}(t,x)=-\underline{g}_{i_q,i_{q+1}}(t,x)\mathbf{1}_{i_q\neq i_{q+1}}+\bar{g}_{j_q,i_{q+1}}(t,x)\mathbf{1}_{j_q\neq j_{q+1}}$ or $\varphi_{i_q,i_{q+1}}(t,x) = \underline{g}_{i_q,i_{q+1}}(t,x) \mathbf{1}_{i_q \neq i_{q+1}} - \bar{g}_{j_q,i_{q+1}}(t,x) \mathbf{1}_{j_q \neq j_{q+1}}).$

Study of related system of variational inequalities

Notions of viscosity sub-supersolution of [\(3\)](#page-14-0)

Definition :

 $u = (u^{i,j})$: viscosity subsolution of [\(3\)](#page-14-0) if u is usc and, if for $t < T$ and any (p_u, q_u, M_u) in $\bar{\mathcal{J}}^+(u^{i,j}(t, x))$,

$$
\min \left\{ \left(v^{i,j} - L^{i,j}[\vec{v}] \right) (t, x) ; \; ; \; \max \left\{ \left(v^{i,j} - U^{i,j}[\vec{v}] \right) (t, x) ; \right. \\ \left. - p_u - q_u b(t, x) - \frac{1}{2} \text{Tr} \left(\sigma \sigma^T M_u \right) - \Psi^{i,j} (t, x, \left(v^{k,l}(t, x) \right) \right) \right\} \right\} \leq 0,
$$
\n
$$
\text{and } v^{i,j}(T, x) \leq h^{i,j}(x), \text{ for } t = T.
$$
\n
$$
(5)
$$

 $(v^{i,j})$: supersolution of [\(3\)](#page-14-0) if v lsc and if [\(5\)](#page-17-0) holds for any $\overline{(\rho_{\mathsf{v}}, q_{\mathsf{v}}, \mathsf{M}_{\mathsf{v}})}$ in $\bar{\mathcal{J}}^-(\mathsf{v}^{i,j}(t,x))$ replacing \leq by \geq .

The comparison result

The comparison result Assume that $u = (u^{i,j})$ (resp : $w = (w^{i,j})$) is a subsolution of [\(3\)](#page-14-0) (is a supersolution of (3)), If, in addition both u and w are in class Π_{σ} $\exists \; \mathcal{C}, \; \gamma > 0, \; \forall \; (t,x), \; |u^{i,j}(t,x)| + |w^{i,j}(t,x)| \leq \mathcal{C} (1+|x|^\gamma),$ then

$$
\forall t \in [0, T[, \forall (i,j) \ u^{i,j}(t,x) \leq w^{i,j}(t,x).
$$

 \Rightarrow there exists at most one continuous viscosity solution in the class Π_{σ} .

Auxiliary system of variational inequalities For any $(i,j)\in \mathsf{\Gamma}=\mathsf{\Gamma}^1\times\mathsf{\Gamma}^2$ we introduce

$$
\begin{cases}\n\max \left\{ \left(v^{i,j} - U^{i,j}[\vec{v}] \right) (t, x); \n\min \left\{ \left(v^{i,j} - L^{i,j}[\vec{v}] \right) (t, x); \n- \partial_t v^{i,j} (t, x) - \mathcal{L} v^{i,j} (t, x) - \Psi^{i,j} (t, x, (v^{k,l}(t, x))) \right\} \right\} = 0 \\
v^{i,j}(T, x) = h_{i,j}(x)\n\end{cases}
$$
\n(6)

$$
L^{i,j}[\vec{v}](t,x) := \max_{k \in (\Gamma^1)^{-i}} (v^{k,j}(t,x) - \underline{g}_{i,k}(t,x))
$$

$$
U^{i,j}[\vec{v}](t,x) = \min_{l \in (\Gamma^2)^{-j}} (v^{i,l}(t,x) + \overline{g}_{i,l}(t,x)).
$$

First approximating scheme $\forall\,\, (i,j)\in \mathsf{\Gamma}=\mathsf{\Gamma}^1\times \mathsf{\Gamma}^2,$

$$
\begin{cases}\n\min\{\bar{v}^{i,j,m}(t,x) - \max_{k \in (\Gamma^1)^{-i}}(\bar{v}^{k,j,m}(t,x) - \underline{g}_{i,k}(t,x)); \\
-\partial_t \bar{v}^{i,j,m}(t,x) - \mathcal{L}\bar{v}^{i,j,m}(t,x) - \bar{\Psi}^{i,j,m}(t,x,(\bar{v}^{k,l,m}(t,x)))\} = 0, \\
\bar{v}^{i,j,m}(T,x) = h^{i,j}(x)\n\end{cases}
$$
\n(7)

$$
L^{i,j,m}(\vec{v}) = \max_{k \in (\Gamma^1)^{-i}} (\bar{v}^{k,j,m}(t,x) - \underline{g}_{i,k}(t,x))
$$

$$
U^{i,j,m}(\vec{v}) = \min_{l \in (\Gamma^2)^{-j}} (v^{i,l,m}(s,x) + \overline{g}_{j,l}(s,x))
$$

$$
\bar{\Psi}^{i,j,m}(t,x,(y^{k,l})) = \Psi^{i,j}(t,x,(y^{k,l})) - m(y^{i,j} - \min_{l \in (\Gamma^2)^{-j}} (y^{i,l} + \overline{g}_{j,l}(t,x)))^+.
$$

Second approximating scheme $\forall\,\, (i,j)\in \mathsf{\Gamma}=\mathsf{\Gamma}^1\times \mathsf{\Gamma}^2,$

$$
\begin{cases}\n\max\{\underline{v}^{i,j,n}(t,x) - \min_{l \in (\Gamma^2)^{-j}} (\underline{v}^{i,l,n}(t,x) + \bar{g}_{j,l}(t,x)); \\
-\partial_t \underline{v}^{i,j,n}(t,x) - \mathcal{L} \underline{v}^{i,j,n}(t,x) - \underline{\Psi}^{i,j,n}(t,x, (\underline{v}^{k,l,n}(t,x)))\} = 0, \\
\underline{v}^{i,j,n}(T,x) = h^{i,j}(x)\n\end{cases}
$$
\n(8)

with

$$
\underline{\Psi}^{i,j,n}(t,x,(y^{k,l})) = \Psi^{i,j}(t,x,y^{i,j}) + n\Big(\max_{k \in (\Gamma^1)^{-i}} (y^{k,j} - \underline{g}_{i,k}(t,x)) - y^{i,j}\Big)^+
$$

Marie-Amélie Morlais (LMM, Le Mans) J.w.w. Said Hamadène [Conference "Advanced methods in mathematical finance"](#page-0-0)

Identification of the limit of the two schemes

Theorem : viscosity characterization of the limit \bullet For each m_i $(\bar{v}^{i,j,m})_{i,j}$: value of some standard switching problem, $\lim_{m\searrow \sqrt{\nu}^{i,j,m}=\sqrt{\nu}^{i,j}}$, with $\sqrt{\nu}^{i,j}$: is *usc* and a (viscosity) solution to system [\(3\)](#page-14-0). • For each n $(\underline{v}^{i,j,n})$ coincides (up to a sign) with value of standard switching problem. $\lim\, \nearrow \underline{v}^{i,j,n} = \underline{v}^{i,j}$ with $\underline{v}^{i,j}$ *lsc* and a (viscosity) solution to system [\(6\)](#page-19-0).

Perron's method : existence of viscosity solution for systems [\(3\)](#page-14-0) and [\(6\)](#page-19-0)

Theorem

Suppose that system [\(3\)](#page-14-0) satisfies the comparison theorem. If besides there exist both $\underline{v} = (\underline{v}^{i,j})$ which is lsc and a supersolution of [\(3\)](#page-14-0) and \bar{v} which is usc and a subsolution of (3) then

$$
\exists u = (u^{i,j}) \ s.t. \ \overline{v}^{i,j} \leq u^{i,j} \leq \underline{v}^{i,j},
$$

with u which is continuous and a viscosity solution of [\(3\)](#page-14-0).

Sketches of the proofs

First claim : $\bar{v}^{i,j}$ viscosity solution of [\(3\)](#page-14-0)

- Step 1 : Prove that $\bar{v}^{i,j}$: subsolution of [\(3\)](#page-14-0) and, for each m_0 , v^{i,j,m_0} : supersolution
- Step 2 : Set $v^{i,j,(m_0)} :=$ $\sup\{\tilde{v}^{i,j}\text{ subsolution s.t. }\bar{v}^{i,j}\leq \tilde{v}^{i,j}\leq v^{i,j,m_0}\}$
- Step 3 : By uniqueness of viscosity solution, we get $v^{i,j} = \bar{v}^{i,j}$
- Second claim : $v^{i,j}$ viscosity solution of [\(6\)](#page-19-0). Main idea : replace v by $-v$, verify that $-v$ satisfies a new system of the same type as [\(3\)](#page-14-0) and mimic the previous argumentation.

Third part : the switching game

- 2.1 Preliminaries : Min-max and Max-min PDEs and connection with zero sum Dynkin games
- 2.2 Identification of the value of the game
- 2.3 Conclusion

Marie-Amélie Morlais (LMM, Le Mans) J.w.w. Said Hamadène [Conference "Advanced methods in mathematical finance"](#page-0-0)

Min-max and Max-min PDEs and connection with zero-sum Dynkin games

In Let consider a Brownian setting (finite horizon T) + X strong solution of

$$
dX_s^{t,x} = b(s, X_s^{t,x})ds + \sigma(s, X_s^{t,x})dW_s, \ \forall \ s \in [t, T]
$$

and $\mathcal L$ its infinitesimal generator

 \blacktriangleright $I(t, x)$, $h(t, x)$ and $g(x)$ continuous functions of Π^g such that

$$
I(t,x) \leq h(t,x) \text{ and } I(T,x) \leq g(x) \leq h(T,x)
$$

 \blacktriangleright $f(t, x, y, z)$ R-valued function, Lipschitz in (y, z) , in \Box ^g and continuous in (t, x) (uniformly w.r.t (y, z)).

Min-max and Max-min PDEs and connection with zero-sum Dynkin games

Let us now consider the following PDE with bilateral obstacles

 $\min\{(u-l)(t,x),\,\,\max\{(u-h)(t,x),\,\, -\partial_t u - \mathcal{L} u - f(t,x,u,(\sigma^T D_x u))\}\}$ (9)

Theorem (Hamadene-Hassani 05)

There exists $u := u(t, x)$ a continuous function of the class Π^g which is the unique viscosity solution of system [\(9\)](#page-27-0). Besides $u(t, x)$ is also solution of

$$
\max\{(u-h)(t,x), \min\{(u-l)(t,x), -\partial_t u - \mathcal{L}u - f(t,x,u,(\sigma^T D_x u))\}\}\
$$
(10)

Theorem

Assuming that

(i) The generators $\Psi^{i,j}$ do not depend on z and satisfies

$$
\forall (s,x,\vec{y}) \, |\Psi^{i,j}(s,x,\vec{y})| \leq C(1+|x|^\gamma).
$$

(ii) the family $(\bar{g}_{i,l})$ of penalty costs are Itô processes, i.e. $d\bar{g}_{j,l}(s)=\bar{u}_s^{j,l}ds+\bar{v}_s^{j,l}dW_s$, with $\bar{u}^{j,l}$ and $\bar{v}^{j,l}$ s.t. $\mathbb{E}\left(\int_0^{\mathcal{T}}|\bar{u}^{j,l}_s|^2ds\right)<\infty,$ and $\mathbb{E}\left(\int_0^{\mathcal{T}}|\bar{v}^{j,l}_s|^2ds\right)<\infty,$ • the two obstacles associated with $\bar{v}^{i,j}$ of system [\(3\)](#page-14-0) are separated i.e. $L^{i,j}(\bar{v})\leq U^{i,j}(\bar{v})$ • The two solutions $(\bar{v}^{i,j})$ and $(\underline{v}^{i,j})$ associated with systems [\(3\)](#page-14-0) and [\(6\)](#page-19-0) coincide.

Theorem

Under the additional assumption that the generator $\Psi^{i,j}$ (modelizing instantaneous profit in mode (i, j)) does not depend on (\vec{y}, z) we also claim that

$$
\bar{v}^{i,j} = \underline{v}^{i,j} = V^{i,j},
$$

with

 $V^{i,j} = \text{ess inf}_{\beta \in \mathcal{B}_{t,j}} \text{ess sup}_{\alpha \in \mathcal{A}_{t,i}} J(\alpha, \beta) = \text{ess sup}_{\alpha \in \mathcal{A}_{t,i}} \text{ess inf}_{\beta \in \mathcal{B}_{t,j}} J(\alpha, \beta)$

which is the value of the switching game.

Thanks for your attention !

Marie-Amélie Morlais (LMM, Le Mans) J.w.w. Said Hamadène [Conference "Advanced methods in mathematical finance"](#page-0-0)