Advanced methods in Mathematical Finance.
Fédération de Recherche CNRS Mathématiques des Pays de la Loire
Angers, 3-7 septembre 2013

Arbitrages in a progressive enlargement of filtrations before and after
the default

Monique Jeanblanc,

Université d’Evry-Val-D’Essonne

Based on joint works with A. Aksamit, T. Choulli, J. Deng, C. Fontana, S. Song

Financial support from Fédération Bancaire Francaise



Je ne cherche pas a connaitre les réponses, je cherche a comprendre les questions.
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We consider a filtered probability space (€2, A,F,P) and a random time 7 (i.e., a

non negative finite A-measurable random variable).

We assume that the financial market where a risky asset with price S (an
[F-adapted positive process) and a riskless asset (assumed to be constant, for
simplicity) are traded is arbitrage free. More precisely, we assume w.l.g. that S is a
(P,F) (local) martingale.

We denote by G the progressively enlarged filtration of F, i.e.,

G = NsstFs Vo(T NAs)
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We consider a filtered probability space (2, A,F,P) and a random time 7 (i.e. a

non negative finite A-measurable random variable).

We assume that the financial market where a risky asset with price S (an
F-adapted positive process) and a riskless asset (assumed to be constant, for
simplicity) are traded is arbitrage free. More precisely, we assume w.l.g. that S is a
(P,F) (local) martingale.

We denote by G the progressively enlarged filtration of F, i.e.,
G = NsstFs Va(T N s)

Our goal is to detect if the knowledge of 7 allows for some arbitrage, i.e., if, using
(G-adapted strategies, one can make profit.

We start by an elementary remark: assume that there are no arbitrages in G.
Then, roughly speaking, S would be a (Q, G) martingale for some emm Q, hence
would be also a (QQ, F) martingale. In case of a complete market, this implies that
any F martingale would be a G martingale. This last property is known as

immersion property.




Illustrative examplse

Let dS; = S;odW; where W is a Brownian motion.

This martingale S goes to 0 when ¢ goes to infinity, hence the random time

T =sup{t : Sy = sup, S} is well defined, and obviously leads to arbitrages:

e at time 0, buy one share of S (at price Sy), borrow Sy, then, at time 7, reimburse
the loan Sy and sell the share at price S,. The gain is S, — Sy > 0 with an initial

wealth null.

e At time 7, shortsell S for a delivery at time 7 + €. This strategy is admissible, S
being bounded above by S..




One can find, in Dellacherie, Maisonneuve, Meyer (1992), Probabilités et Potentiel,
chapitres XVII-XXIV: Processus de Markov (fin), Compléments de calcul
stochastique, page 137 Par exemple, S; peut représenter le cours d’une
certaine action a linstant t, et 7 = sup{t, Sy =sup,Ss} est le moment
tdéal pour vendre son paquet d’actions. Tous les spéculateurs cherchent
a connaitre T sans jamais Yy parvenir, d’ot son nom de variable aléatoire
honnéte. For instance, S; may represent the price of some stock at time ¢ and 7
is the optimal time to liquidate a position in that stock. Every speculator strives to

know when 7 will occur, without ever achieving this goal. Hence, the name of

honest random variable.

We shall define general honest times later.




The problem is fully different when there are jumps

Let N be a Poisson process with intensity A and M be its compensated martingale.
Define the price process S as dS; = S;_pdM; with ¢ a constant satisfying ¢ > —1,
so that

St = Spexp(—Apt + In(1 + @) Ny) .

The random time 7 = sup{t : S; = sup, Ss} is well defined.

o If o> 0,5, > 5y and an arbitrage opportunity is realized at time 7, with a long

position in the stock. There are arbitrages after 7 (shortselling)

o If v < 0, due to continuity on right of the process, one has S,_ = sup Sy and
S, < S,_. We shall see that there are NA before 7 and there are arbitrages after 7
(the price being bounded above by S, _).




Admissible Portfolio and Arbitrages Opportunities
Let (K) be one of the filtrations {F,G}.
We denote (0 - S); = f(f 0.dS..

For a € R, an element 0 € L* (5) is said to be an a-admissible K-strategy if
(0-85), =lim, (0-95), exists and V;(0,0) := (6 -S5), > —a P-a.s. for all t > 0.
We denote by AX the set of all a-admissible K-strategies. We say that an element
0 ¢ L* (S) is an admissible K-strategy if 0 € A% := UCLER_,_AE{‘




Various kinds of arbitrages

An element 6 € A* yields an Arbitrage Opportunity if V (0,0)_ > 0 P-a.s. and
P(V (0,6),, > 0) > 0. In order to avoid confusions, we shall call these arbitrages

strong arbitrages.

If there exists no such § € AX we say that the financial market (Q,K,P; S) satisfies
the No Arbitrage (NA) condition.
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NFLVR holds in the financial market (£2,K,P;.S) if and only if there exists an
Equivalent Martingale Measure in K, i.e. Q ~ P so that the process S is a
(Q, K)-local martingale.
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A non-negative K,,-measurable random variable £ with P (£ > 0) > 0 yields an
Arbitrage of the First Kind if for all z > 0 there exists an element 0% € A%
such that V (z,0%)_ =2+ (07 - 5)s > & P-a.s. If there exists no such random
variable we say that the financial market (2, K, P; S) satisfies the No Arbitrage of
the First Kind (NA1) condition.

We say that S satisfies No Unbounded Profit with Bounded Risk
(NUPBR) if

K(S):={(H-S)oo: He L(S) and H-§ > —1}

is bounded in L°(P).
One can prove that NAI is equivalent to NUPBR.
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Theorem (Takaoka) An F-semimartingale S satisfies NUPBR if and only if
Lo(S) #0
where L£,(S) is the set of o-densities given by

L,(S):={L & Mjp.(F): L>0and LS is a sigma-martingale}
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Theorem (Takaoka) An F-semimartingale S satisfies NUPBR if and only if
Lo(S) #0
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An R-valued semimartingale X is called a sigma-martingale if there exists an R
-valued martingale M and an M-integrable predictable R*-valued process ¢ such
that X = ¢ - M.
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Theorem (Takaoka) An F-semimartingale S satisfies NUPBR if and only if
Lo(S)#0
where L,(S) is the set of o-densities given by

L,(8):={L € M;pc(F): L>0and LS is a sigma-martingale}

An R-valued semimartingale X is called a sigma-martingale if there exists an R

-valued martingale M and an M-integrable predictable R*-valued process ¢ such
that X = ¢ - M.

A strictly positive K-local martingale L = (Lt)tZO with Lo = 1 and L., > 0 P-a.s.
is said to be a local martingale deflator in K if the process LS is an K-local
martingale. If there exists a deflator, then NUPBR holds
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Enlargement of filtration results

We define the right-continuous with left limits FF-supermartingale
Zy =P(r>t|F).

The supermartingale Z coincides with the optional projection of I} ;- The
decomposition of Z leads to another important martingale that we denote by m,
and is given by

m:= 7 + A%F

where A%" is the F-dual optional projection of A = I [r,00["
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Enlargement of filtration results

We define the right-continuous with left limits F-supermartingale
Zy =P(r>t|F).

The supermartingale Z coincides with the optional projection of I} ;- The
decomposition of Z leads to another important martingale that we denote by m,
and is given by

m:= 7 + A%F

where A%" is the F-dual optional projection of A = I [r,00["

Let (A¢, t > 0) be an integrable increasing process (not necessarily F-adapted).
There exists a unique integrable F-optional increasing process (A7 ’F, t > 0), called
the dual optional projection of A such that

E (/ YSdAS) =E (/ YSdAgF)
0 0

for any positive [F-optional process Y.
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In a first step, we restrict our attention to what happens before 7.

Therefore, we do not require any extra hypothesis on 7, since any F martingale
stopped at 7 is a G semi-martingale, as established by Jeulin:
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In a first step, we restrict our attention to what happens before 7.

Therefore, we do not require any extra hypothesis on 7, since any F martingale
stopped at 7 is a G semi-martingale, as established by Jeulin:

To any I local martingale M, we associate the G local martingale M

tAT IF
/\’T T d<M7 m>8
0 S—

and the G local martingale M

tAT F
~ d| M
MtT - MtT o / [ ~7 m]s’
0 Lo

It can be proved that Z and Z do not vanish on [0, 7].
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Continuous filtrations

Continuous filtrations
If all F martingales are continuous, there are NA1 before 7
Recall that the bracket of continuous martingales does not depend on the filtration.

Let, for t < T,
t F
~ d{m,m
My = my — / < E
0 ZS

and define the G local martingale L as

_ _ 1
st = Ltht, L() = 1, where dNt = —7d’fl\’bt

t
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Continuous filtrations

Continuous filtrations
If all F martingales are continuous, there are NA1 before 7
Recall that the bracket of continuous martingales does not depend on the filtration.

Let, for t < T,
t F
~ d{m,m
My = my — / < E
0 ZS

and define the G local martingale L as

_ _ 1
st = Ltht, L() = 1, where dNt = —7d’fl\lt

t

If SL is a local martingale, there are no arbitrages of the first kind. Recall that

~ Ld(S,m)~
Sy =8 —/ ——
! ‘ 0 Zs

is a G local martingale.
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Continuous filtrations

From

and

we obtain

where X ™" Y is a notation for X — Y is a local martingale.

_ _ 1
st = Ltht,L() = 1, where dNt = —7d7/7\’l,t

t

~ L d(S,m)E
S, =S8 —/ SR
' ' i 7

d(LS); = LdS;+ SidLy + d(L,S)E

mart 1 1 ~

mar 1
2 L (d(S,m) — d(S,m);) = 0
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Continuous filtrations

Strong arbitrages in the case where F is the Brownian filtration and 7 is

an honest time which avoids F stopping times

A random time 7 is honest if 7 is equal to an F;-measurable random variable on

T <.
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Continuous filtrations

Strong arbitrages in the case where [F is the Brownian filtration and 7 is
an honest time which avoids F stopping times

A random time 7 is honest if 7 is equal to an F;-measurable random variable on
T < t.

Example: Let X be an adapted continuous process and
X" =sup X, X; =sup,<; Xs. The random time

T =inf{s : Xy = X"}

is honest.
Indeed, on the set {7 < t}, one has 7 = inf{s <t : X, = X;}.

If 7 is honest and avoid F stopping times, then Z. = 1.
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Continuous filtrations

Arbitrage portfolio
NA fails to hold in the enlarged financial market M(G) = (2, G, P; S) on the time

horizon [0, 7]

The martingale m represents the value of a self-financing portfolio, with initial

value 1. Since m, > 1 and P(m, > 1) > 0, one gets an arbitrage opportunity.
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Continuous filtrations

It is possible to prove:

One can never construct arbitrage opportunities in the enlarged
financial market M(G) strictly before the honest time 7.

Let o be a G-stopping time with o < 7 P-a.s. Then NFLVR holds in the enlarged
financial market M(G) on the time horizon |0, g|.
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Continuous filtrations

Arbitrages, General case

The completeness of the F market seems to be an essential hypothesis to have

strong arbitrages:

Let W' W? be a standard 2-dimensional Brownian motion and
dS; = S; f(W2)dW}

Under regularity assumptions F° = F! V F2. Let 7 be an F? honest time (hence an
> honest time). Since W' is an F! V (7 A -) martingale, there are no arbitrages in

the enlarged filtration.
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Discontinuous case

Discontinuous case
Poisson case

Let X be a Poisson process, with compensated martingale M and 7 a random time.

Let Z; = my — AS’p be the optional decomposition of Z and m the G-martingale

part of the G semi-martingale m.
This decomposition is NOT the Doob-Meyer decomposition (see examples below)

In a Poisson setting, from PRP, dm; = ¥;dM; for some predictable process 9, so
that, on t < 7,

1 1
Ly Ly

We assume that S is an [F martingale.
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Discontinuous case

Discontinuous case
Poisson case

Let X be a Poisson process, with compensated martingale M and 7 a random time.

Let Z; = my — AS’p be the optional decomposition of Z and m the G-martingale

part of the G semi-martingale m.
This decomposition is NOT the Doob-Meyer decomposition (see examples below)

In a Poisson setting, from PRP, dm; = ¥;dM; for some predictable process 9, so
that, on t < 7,

1 1
Ly Ly

We assume that S is an [F martingale.

In a Poisson setting, there are NA1 before 7

29



Discontinuous case

We are looking for a RN density of the form dL; = L;_r;dm; so that STL is a G
local martingale. Integration by parts formula leads to (on ¢t < 7)

d(LS)t — Lt_dSt —|— St_st —I— d[L, S]t
mar 1
at LSty Z—d<M’ mys + Ly Sy ki d Xy
-[;_
mart

1 1
— Lt—St—SOtZ—d<M> m>t + Lt—St—"?tSOtwt)‘(l =+ Z—%)dt
t— t—

mart 1 1
= L, S, — 1+ —
t—St— Pt A (Zt— + ke (1 + 7. ¢t)> dt

1

— 7. To; one obtains a deflator. Note that

Therefore, for k; =

. 1 =
st = Lt_litdmt = —Lt_ Zt_ I ’th ¢tht

. . o . . 1
is indeed a positive martingale, since mwt < 1.
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Discontinuous case

Honest times : First Example

Define the time 7 as
T =sup{t: ut — X; < a}

where 1 > A. The Azéma supermartingale associated with the honest time 7 is
P(r > t|F) = ¥(pt — Xy — a)lu—x,>ay + L{u—x,<a}s

where 1 (x) is the ruin probability associated with process ut — X; and starting
point z > 0, i.e., ¥(x) = P(T* < o0) with T* = inf{t: z + ut — X; < 0}.
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Discontinuous case

Define ¥y = inf{t > 0 : ut — Xy = a} and then, for each n > 1,
Uy, =inf{t > 9,1 : ut — Xy = a}.

The dual optional projection A*" of the process I, ) equals

0
o, F __

where 6 = % — 1 and

0
my = 1510 ; Lip>p,) + 0t — X —a)l—x,>0) + Lip—x,<a}
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Discontinuous case

Strong arbitrages:

Note that the process A% is flat after 7 and that, on the set 7 = 1J,,, one has

Aol = ﬁn. The martingale m takes the value 1 at time 0 and

9 | 9 1
T:ZT P 2 = — (1
" M Ll e R wr Ll w0

therefore m, > 1 and P(m, > 1) > 0. Since the market is complete, this martingale
is the value of a portfolio. Note that m; = Z; + A} >z > 0, hence the strategy is

admissible.
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Discontinuous case

Honest times : Second Example

Let
dSt — St_QOth, S() =1

or
St = exp(—Apt + In(1 + @) Ny) .
The process S; = sup,<; Ss is continuous if ¢ < 0.

Define the random time 7 as

T =sup{t: S, =95/}

Let us note that 7 is well defined and that if ¢ >0 S, < SF = sup, S
it -1<¢p<0,S5; =5 =sup, S:.

The time 7 does not avoid F-stopping times, and is not an I stopping time. There
are arbitrages if ¢ > 0, there are no arbitrages if ¢ < 0.
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Discontinuous case

The Azéma supermartingale associated with the honest time 7 is

P(r > t|F;) =P( sup Ss > sup Ss|F:) =P( sup §S > —|F) = Y(—=-),
s€(t,00] s€[0,4] s€[0,00] St

with S an independent copy of S and ¥(z) = P(S* > z).

It p>0,5"=S5;, hence Z, = 1. It follows that m, > 1, hence m is the value of a

self financing strategy associated with an arbitrage.
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Discontinuous case

If ¢ <0, S* is continuous and

S h e h *
17, — <¢(St_(1+go)) w<5t_>)dzvt+w<st_>(wst_dwgtds)

Then, m; =1+ fg AgdMg and, ont < 7

: tA tA
N, = M _/ Bs\ds= N _/ A1+ 22)ds
t t 0 ZS t 0 ZS

ST ST
where Ay = w(ss_(fﬂo)) —(g=).

The quantity (1 + 2=) is positive: indeed

1+ 5 = 7 (Gt 1) = 7 (000) 4 6() ~ 9@ ) s,

Hence, there exists a change of probability so that M is a G-martingale.

36



Discontinuous case

The Case of Quasi-Left Continuous Processes

This subsection focuses on processes that do not jump on predictable stopping
times (i.e., quasi-left continuous processes). We prove that NA1 is preserved under

random horizon for these processes under some additional assumptions.

We assume that S and m are quasi-left continuous processes. We also
assume that Z and Z_ are strictly positive. In all this section, the processes

are considered on the time interval |0, 7[.

~

Consider the G-local martingale m and the process K := (Z)~! where
Zy = P(r > t|F;). It is known that Z_ + Am = Z.
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Discontinuous case

Optional Integral

Let N be a local martingale and H an adapted process.

(a) The compensated stochastic integral M = H © N is the unique K-local

martingale such that, for any K-local martingale Y,

E ([M,Y]s (/ HdNY])

(b) The process [M,Y]| — H .|[N,Y] is an K-local martingale.
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Discontinuous case

Optional Integral

Let N be a local martingale and H an adapted process.

(a) The compensated stochastic integral M = H © N is the unique K-local

martingale such that, for any K-local martingale Y,

E ([M,Y]s (/ HdNY])

(b) The process [M,Y]| — H .|[N,Y] is an K-local martingale.

The compensated stochastic integral of H with respect to NV is the unique

local martingale, M, such that
M¢=P8H.N° and AM = HAN — P*(HAN)

where P® X is the predictable projection of the process X.

39



Discontinuous case

The process &£ (]V ) ST is a positive G-local martingale, where the process

N := —K ®m is a G-local martingale.
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Discontinuous case

We prove that £ (Nf ) > 0, or equivalently 1 + AN > 0. From the definition of
optional integrals

Using the fact that A = Am and that, K = Z~1 = (Z_ + Am)~ !, we obtain

~ A A Z_
A4 A4 A4

Indeed, for any predictable stopping time 1" we have

Am Am
7$(E2) Mo = B o) = 0
T T
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Discontinuous case

Assuming that S is quasi-left continuous

N 1 1 R
1o, « [m, S] — —1yo.-1 « [(M)", S] — — 10,7 « [, (mM)"]

Loy
o
A,
3)
|

— ]1]0,7_] . [m, S]

F

since (m)¥ and S have no common jumps and (m)" is continuous. It follows that

- ~ 1 1 5
[N,S] — [N7 ]+[Naz]]-]0,7']'[<m7S>F]+[_§]]']OT]®m7 ]
1 ~
+Z—H]OT]A<m,S>F N
1 - A 1
— —]1]07-] [m,S] _—H]O,T]'[mvs]
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Discontinuous case

(General case

Let 7 be a random time. Then, the following assertions are equivalent:
(i) The thin set {Z = 0N Z_ > 0} is evanescent.
(ii) For any process S satisfying NUPBR(IF), S7 satisfies NUPBR(G ).

43



After 7, honest times

After 7, honest times

We have to impose condition on 7 so that, after 7, F martingales are G

semi-martingales.

We restrict our attention to the case of honest times. We recall that we use the

additive decomposition of Z of the form
Zt = MMy — A?’p

Then, any F martingale X is a G semimartingale with decomposition

tAT TV F
~ d(X,m) d(X,m)

where X such that is a G-local martingale.
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After 7, honest times

Brownian case

We assume that 7 avoids [ stopping times. Then Z,. = 1.
The process m — m. yields to a strong arbitrage.
The r.v. m, yields to an arbitrage of the first kind.

Indeed, fort >7, m =2, + A? =2Z; + A2 <1+ m,; —1=m, and
my :m7—|—ff I
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After 7, honest times

Quasi continuous case

Assume that m and S are qcl

Let m = N, oo - m + 7—5— - (m)" and Z the supermartingale Z; = P(1 > t|F;)

< R
DeﬁneN—EQm

We see that £(N) is positive G-local martingale

We prove, using that (m, S)¥ is continuous, that for a G-martingale N for every

F-martingale S we have

1 ~
— 1 oor - M, S| = |N,S
5 lirool - [, 5] = [N, 5]

or equivalently £(N)(S — S7) is G-local martingale for each F-martingale S.
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General result

General result

We recall that a random set A is called evanescent if the set {w,Jt(w,t) € A] is P
null A random time 7 is called a thin random time if its graph is contained in a
thin set, i.e., if there exists a sequence of F-stopping times (,,)5°; with disjoint
graphs such that [71] C U, [¥.]-

Let 7 be a random time satisfying Z, < 1. Then, the following assertions are
equivalent:

(i) The thin set {Z = 0N Z_ > 0} is evanescent.

(ii) For any process S such that S — S7 satisfies NUPBR(F), S — S7 satisfies
NUPBR(G ).
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