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We consider a filtered probability space (Ω,A,F,P) and a random time τ (i.e., a
non negative finite A-measurable random variable).

We assume that the financial market where a risky asset with price S (an
F-adapted positive process) and a riskless asset (assumed to be constant, for
simplicity) are traded is arbitrage free. More precisely, we assume w.l.g. that S is a
(P,F) (local) martingale.

We denote by G the progressively enlarged filtration of F, i.e.,

Gt = ∩s>tFs ∨ σ(τ ∧ s)

Our goal is to detect if the knowledge of τ allows for some arbitrage, i.e. if, using
G-adapted strategies, one can make profit. We start by an elementary remark:
assume that there are no arbitrages in G. Then, roughly speaking, S would be a
(Q,G) martingale for some e.m.m. Q, hence would be also a (Q,F) martingale. In
case of a complete market, this implies that any F martingale would be a G
martingale. This last property is known as immersion property.
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Illustrative examplse

Let dSt = StσdWt where W is a Brownian motion.

This martingale S goes to 0 when t goes to infinity, hence the random time
τ = sup{t : St = sups Ss} is well defined, and obviously leads to arbitrages:

• at time 0, buy one share of S (at price S0), borrow S0, then, at time τ , reimburse
the loan S0 and sell the share at price Sτ . The gain is Sτ − S0 > 0 with an initial
wealth null.

• At time τ , shortsell S for a delivery at time τ + ε. This strategy is admissible, S

being bounded above by Sτ .
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One can find, in Dellacherie, Maisonneuve, Meyer (1992), Probabilités et Potentiel,
chapitres XVII-XXIV: Processus de Markov (fin), Compléments de calcul
stochastique, page 137 Par exemple, St peut représenter le cours d’une
certaine action à l’instant t, et τ = sup{t, St = sups Ss} est le moment
idéal pour vendre son paquet d’actions. Tous les spéculateurs cherchent
à connaître τ sans jamais y parvenir, d’où son nom de variable aléatoire
honnête. For instance, St may represent the price of some stock at time t and τ

is the optimal time to liquidate a position in that stock. Every speculator strives to
know when τ will occur, without ever achieving this goal. Hence, the name of
honest random variable.

We shall define general honest times later.

7



The problem is fully different when there are jumps

Let N be a Poisson process with intensity λ and M be its compensated martingale.
Define the price process S as dSt = St−ϕdMt with ϕ a constant satisfying ϕ > −1,
so that

St = S0 exp(−λϕt + ln(1 + ϕ)Nt) .

The random time τ = sup{t : St = sups Ss} is well defined.

• If ϕ > 0, Sτ ≥ S0 and an arbitrage opportunity is realized at time τ , with a long
position in the stock. There are arbitrages after τ (shortselling)

• If ϕ < 0, due to continuity on right of the process, one has Sτ− = sup Ss and
Sτ < Sτ−. We shall see that there are NA before τ and there are arbitrages after τ

(the price being bounded above by Sτ−).
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Admissible Portfolio and Arbitrages Opportunities

Let (K) be one of the filtrations
{
F,G

}
.

We denote (θ · S)t =
∫ t

0
θsdSs.

For a ∈ R+, an element θ ∈ LK (S) is said to be an a-admissible K-strategy if
(θ · S)∞ := limt→∞ (θ · S)t exists and Vt(0, θ) := (θ · S)t ≥ −a P-a.s. for all t ≥ 0.
We denote by AKa the set of all a-admissible K-strategies. We say that an element
θ ∈ LK (S) is an admissible K-strategy if θ ∈ AK :=

⋃
a∈R+

AKa .
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Various kinds of arbitrages

An element θ ∈ AK yields an Arbitrage Opportunity if V (0, θ)∞ ≥ 0 P-a.s. and
P
(
V (0, θ)∞ > 0

)
> 0. In order to avoid confusions, we shall call these arbitrages

strong arbitrages.

If there exists no such θ ∈ AK we say that the financial market (Ω,K,P; S) satisfies
the No Arbitrage (NA) condition.
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NFLVR holds in the financial market (Ω,K,P; S) if and only if there exists an
Equivalent Martingale Measure in K, i.e. Q ∼ P so that the process S is a
(Q,K)-local martingale.

11



A non-negative K∞-measurable random variable ξ with P (ξ > 0) > 0 yields an
Arbitrage of the First Kind if for all x > 0 there exists an element θx ∈ AKx
such that V (x, θx)∞ := x + (θx · S)∞ ≥ ξ P-a.s. If there exists no such random
variable we say that the financial market (Ω,K,P;S) satisfies the No Arbitrage of
the First Kind (NA1) condition.

We say that S satisfies No Unbounded Profit with Bounded Risk
(NUPBR) if

K(S) := {(H · S)∞ : H ∈ L(S) and H · S ≥ −1}

is bounded in L0(P ).

One can prove that NAI is equivalent to NUPBR.
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Theorem (Takaoka) An F-semimartingale S satisfies NUPBR if and only if

Lσ(S) 6= ∅

where Lσ(S) is the set of σ-densities given by

Lσ(S) := {L ∈Mloc(F) : L > 0 and LS is a sigma-martingale}

An R-valued semimartingale X is called a sigma-martingale if there exists an R
-valued martingale M and an M -integrable predictable R+-valued process ϕ such
that X = ϕ ·M .

A strictly positive K- local martingale L = (Lt)t≥0 with L0 = 1 and L∞ > 0 P-a.s.
is said to be a local martingale deflator in K [0, %] if the process LS is an K-local
martingale. If there exists a deflator, then NUPBR holds.
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Enlargement of filtration results

We define the right-continuous with left limits F-supermartingale

Zt := P
(
τ > t

∣∣ Ft

)
.

The supermartingale Z coincides with the optional projection of I]]0,τ [[. The
decomposition of Z leads to another important martingale that we denote by m,
and is given by

m := Z + Ao,F,

where Ao,F is the F-dual optional projection of A = I[[τ,∞[[.

Let (At, t ≥ 0) be an integrable increasing process (not necessarily F-adapted).
There exists a unique integrable F-optional increasing process (Ao,F

t , t ≥ 0), called
the dual optional projection of A such that

E
(∫ ∞

0

YsdAs

)
= E

(∫ ∞

0

YsdAo,F
s

)

for any positive F-optional process Y .
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In a first step, we restrict our attention to what happens before τ .

Therefore, we do not require any extra hypothesis on τ , since any F martingale
stopped at τ is a G semi-martingale, as established by Jeulin:

To any F local martingale M , we associate the G local martingale M̂

M̂τ
t := Mτ

t −
∫ t∧τ

0

d〈M,m〉Fs
Zs−

,

and the the G local martingale M̃

M̃τ
t := Mτ

t −
∫ t∧τ

0

d[M,m]Fs
Z̃s−

,

It can be proved that Z and Z̃ do not vanish on [0, τ ].
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Continuous filtrations

Continuous filtrations

If all F martingales are continuous, there are NA1 before τ

Recall that the bracket of continuous martingales does not depend on the filtration.
Let, for t ≤ τ ,

m̂t := mt −
∫ t

0

d〈m,m〉Fs
Zs

and define the G local martingale L as

dLt = LtdÑt, L0 = 1, where dÑt = − 1
Zt

dm̂t.

If SL is a local martingale, there are no arbitrages of the first kind. Recall that

Ŝt := St −
∫ t

0

d〈S, m〉Fs
Zs

is a G local martingale.
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Continuous filtrations

From
dLt = LtdÑt, L0 = 1, where dÑt = − 1

Zt
dm̂t.

and

Ŝt := St −
∫ t

0

d〈S, m〉Fs
Zs

we obtain

d(LS)t = LtdSt + StdLt + d〈L, S〉Gt
mart= Lt

1
Zt

d〈S, m〉Ft +
1

Zt−
Ltd〈S, m̂〉Gt

mart= Lt
1
Zt

(d〈S, m〉t − d〈S, m〉t) = 0

where X
mart= Y is a notation for X − Y is a local martingale.
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Continuous filtrations

Strong arbitrages in the case where F is the Brownian filtration and τ is
an honest time which avoids F stopping times

A random time τ is honest if τ is equal to an Ft-measurable random variable on
τ < t.

Example: Let X be an adapted continuous process and
X∗ = sup Xs, X

∗
t = sups≤t Xs. The random time

τ = inf{s : Xs = X∗}

is honest.Indeed, on the set {τ < t}, one has τ = inf{s ≤ t : Xs = X∗
t }.

If τ is honest, then Zτ = 1.
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Continuous filtrations

Arbitrage portfolio

NA fails to hold in the enlarged financial market M(G) = (Ω,G,P; S) on the time
horizon [0, τ ]

The martingale m represents the value of a self-financing portfolio, with initial
value 1. Since mτ ≥ 1 and P(mτ > 1) > 0, one gets an arbitrage opportunity.
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Continuous filtrations

It is possible to prove:

One can never construct arbitrage opportunities in the enlarged
financial market M(G) strictly before the honest time τ .

Let % be a G-stopping time with % < τ P-a.s. Then NFLVR holds in the enlarged
financial market M(G) on the time horizon [0, %].
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Continuous filtrations

Arbitrages, General case

The completeness of the F market seems to be an essential hypothesis to have
strong arbitrages:

Let W 1, W 2 be a standard 2-dimensional Brownian motion and

dSt = Stf(W 2
t )dW 1

t

Under regularity assumptions FS = F1 ∨ F2. Let τ be an F2 honest time (hence an
FS honest time). Since W 1 is an F1 ∨ σ(τ ∧ ·) martingale, there are no arbitrages in
the enlarged filtration.
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Discontinuous case

Discontinuous case

Poisson case

Let X be a Poisson process, with compensated martingale M and τ a random time.

Let Zt = mt −A0,p
t be the optional decomposition of Z and m̂ the G-martingale

part of the G semi-martingale m.

This decomposition is NOT the Doob-Meyer decomposition (see examples below)

In a Poisson setting, from PRP, dmt = ψtdMt for some predictable process ψ, so
that, on t ≤ τ ,

dm̂t = dmt +
1

Zt−
d〈m〉t = dmt +

1
Zt−

λψ2
t dt

We assume that S is an F martingale.

In a Poisson setting, there are NA1 before τ
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Discontinuous case

We are looking for a RN density of the form dLt = Lt−κtdm̂t so that SτL is a G
local martingale. Integration by parts formula leads to (on t ≤ τ)

d(LS)t = Lt−dSt + St−dLt + d[L, S]t
mart= Lt−St−ϕt

1
Zt−

d〈M, m〉t + Lt−St−κtϕtψtdXt

mart= Lt−St−ϕt
1

Zt−
d〈M, m〉t + Lt−St−κtϕtψtλ(1 +

1
Zt−

ψt)dt

mart= Lt−St−ψtϕtλ

(
1

Zt−
+ κt(1 +

1
Zt−

ψt)
)

dt

Therefore, for κt = − 1
Zt−+ψt

, one obtains a deflator. Note that

dLt = Lt−κtdm̂t = −Lt−
1

Zt− + ψt
ψtdM̂t

is indeed a positive martingale, since 1
Zt−+ψt

ψt < 1.
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Discontinuous case

Honest times : First Example

Define the time τ as
τ = sup{t : µt−Xt ≤ a}

where µ > λ. The Azéma supermartingale associated with the honest time τ is

P(τ > t|Ft) = ψ(µt−Xt − a)11{µt−Xt≥a} + 11{µt−Xt<a},

where ψ(x) is the ruin probability associated with process µt−Xt and starting
point x > 0, i.e., ψ(x) = P(T x < ∞) with T x = inf{t : x + µt−Xt < 0}.
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Discontinuous case

Define ϑ1 = inf{t > 0 : µt−Xt = a} and then, for each n > 1,
ϑn = inf{t > ϑn−1 : µt−Xt = a}.
The dual optional projection Ao,F of the process 11[τ,∞) equals

Ao,F =
θ

1 + θ

∑
n

11[ϑn,∞)

where θ =
µ

λ
− 1 and

mt =
θ

1 + θ

∑
n

11(t≥ϑn) + ψ(µt−Xt − a)11{µt−Xt≥a} + 11{µt−Xt<a}
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Discontinuous case

Strong arbitrages:

Note that the process Ao,F is flat after τ and that, on the set τ = ϑn, one has
Ao,F

τ = θ
1+θn. The martingale m takes the value 1 at time 0 and

mτ = Zτ +
θ

1 + θ
n =

1
1 + θ

+
θ

1 + θ
n =

1
1 + θ

(1 + θn)

therefore mτ ≥ 1 and P(mτ > 1) > 0. Since the market is complete, this martingale
is the value of a portfolio. Note that mt = Zt + Ao,F

t ≥ Zt > 0, hence the strategy is
admissible.
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Discontinuous case

Honest times : Second Example

Let
dSt = St−ϕdMt, S0 = 1

or
St = exp(−λϕt + ln(1 + ϕ)Nt) .

The process S∗t = sups≤t Ss is continuous if ϕ < 0.

Define the random time τ as

τ = sup{t : St = S∗t }.

Let us note that τ is well defined and that if ϕ > 0 Sτ < S∗τ = supt St

if −1 < ϕ < 0, Sτ = S∗τ = supt St.

The time τ does not avoid F-stopping times, and is not an F stopping time. There
are arbitrages if ϕ > 0, there are no arbitrages if ϕ < 0.
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Discontinuous case

The Azéma supermartingale associated with the honest time τ is

P(τ > t|Ft) = P( sup
s∈(t,∞]

Ss ≥ sup
s∈[0,t]

Ss|Ft) = P( sup
s∈[0,∞]

Ŝs ≥ S∗t
St
|Ft) = ψ(

S∗t
St

),

with Ŝ an independent copy of S and ψ(x) = P(S∗ ≥ x).

If ϕ > 0, S∗τ = Sτ , hence Zτ = 1. It follows that mτ > 1, hence m is the value of a
self financing strategy associated with an arbitrage.
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Discontinuous case

If ϕ < 0, S∗ is continuous and

dZt =
(

ψ(
S∗t

St−(1 + ϕ)
)− ψ(

S∗t
St−

)
)

dNt + ψ′(
S∗t
St−

)
(

ϕλ
S∗t
St−

dt +
1
St

dS∗t

)

Then, mt = 1 +
∫ t

0
∆sdMs and, on t ≤ τ

M̂t = Mt −
∫ t

0

∆s

Zs
λds = Nt −

∫ t

0

λ(1 +
∆s

Zs
)ds

where ∆s = ψ( S∗s
Ss−(1+ϕ) )− ψ( S∗s

Ss−
).

The quantity (1 + ∆s

Zs
) is positive: indeed

(1 +
Ψs

Zs
) =

1
Zs

(Zs + Ψs) =
1
Zs

(
ψ(x) + ψ(

x

1 + ϕ
)− ψ(x)

)
|x=S∗s /Ss

Hence, there exists a change of probability so that M is a G-martingale.
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Discontinuous case

The Case of Quasi-Left Continuous Processes

This subsection focuses on processes that do not jump on predictable stopping
times (i.e., quasi-left continuous processes). We prove that NA1 is preserved under
random horizon for these processes under some additional assumptions.

We assume that S and m are quasi-left continuous processes. We also
assume that Z and Z− are strictly positive. In all this section, the processes
are considered on the time interval ]]0, τ [[.

Consider the G-local martingale m̂ and the process K := (Z̃)−1 where
Z̃t = P(τ ≥ t|Ft). It is known that Z− + ∆m = Z̃.
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Discontinuous case

Optional Integral

Let N be a local martingale and H an adapted process.

(a) The compensated stochastic integral M = H ¯N is the unique K-local
martingale such that, for any K-local martingale Y ,

E ([M, Y ]∞) = E
(∫ ∞

0

Hsd[N, Y ]s

)
.

(b) The process [M, Y ]−H ¦ [N, Y ] is an K-local martingale.

The compensated stochastic integral of H with respect to N is the unique local
martingale, M , such that

M c = p,KH ¦ N c and ∆M = H∆N − p,K(H∆N)

where p,KX is the predictable projection of the process X.
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Discontinuous case

The process E
(
Ñ

)
Sτ is a positive G-local martingale, where the process

Ñ := −K ¯ m̂ is a G-local martingale.
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Discontinuous case

We prove that E(Ñ) > 0, or equivalently 1 + ∆Ñ > 0. From the definition of
optional integrals

1 + ∆Ñ = 1− ∆m̂

Z̃
+ p,G

(
∆m̂

Z̃

)

Using the fact that ∆m̂ = ∆m and that, K = Z̃−1 = (Z− + ∆m)−1, we obtain

1 + ∆Ñ = 1− ∆m

Z̃
+ p,G

(
∆m

Z̃

)
=

Z−
Z̃

> 0

Indeed, for any predictable stopping time T we have

p,G
(

∆m

Z̃

)

T

11(T<∞) = E(
∆mT

Z̃T

11(T<∞)|FT−) = 0
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Discontinuous case

Assuming that S is quasi-left continuous

11]0,τ ] ¦ [m̂, Ŝ] = 11]0,τ ] ¦ [m,S]− 1
Z−

11]0,τ ] ¦ [〈m〉F, S]− 1
Z−

11]0,τ ] ¦ [m̂, 〈m〉F]

= 11]0,τ ] ¦ [m,S]

since 〈m〉F and S have no common jumps and 〈m〉F is continuous. It follows that

[Ñ , S] = [Ñ , Ŝ] + [Ñ ,
1

Z−
11]0,τ ] ¦ [〈m, S〉F] + [− 1

Z̃
11]0,τ ] ¯ m̂, Ŝ]

+
1

Z−
11]0,τ ]∆〈m,S〉F ¦ Ñ

=
1

Z−
11]0,τ ] ¦ [m̂, Ŝ] =

1
Z−

11]0,τ ] ¦ [m,S]
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Discontinuous case

General case

Let τ be a random time. Then, the following assertions are equivalent:
(i) The thin set {Z̃ = 0 ∩ Z− > 0} is evanescent.
(ii) For any process S satisfying NUPBR(F), Sτ satisfies NUPBR(G ).
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After τ , honest times

After τ , honest times

We have to impose condition on τ so that, after τ , F martingales are G
semi-martingales.

We restrict our attention to the case of honest times. We recall that we use the
additive decomposition of Z of the form

Zt = mt −Ao,p
t

Then, any F martingale X is a G semimartingale with decomposition

Xt = X̃t +
∫ t∧τ

0

d〈X, m〉s
Zs−

−
∫ τ∨t

τ

d〈X, m〉Fs
1− Zs−

,

where X̃ such that is a G-local martingale.
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After τ , honest times

Brownian case

We assume that τ avoids F stopping times. Then Zτ = 1.

The process m−mτ yields to a strong arbitrage.

The r.v. mτ yields to an arbitrage of the first kind.

Indeed, for t > τ , mt = Zt + Ao
t = Zt + Ao

τ < 1 + mτ − 1 = mτ and
mt = mτ +

∫ t

τ
ϕsdSs
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After τ , honest times

Quasi continuous case

Assume that m and S are qcl

Let m̂ = 11[τ,∞[ ·m + 1
1−Z−

· 〈m〉F and Z̃ the supermartingale Z̃t = P(τ ≥ t|Ft)

Define Ñ = 1
1−Z̃

¯ m̂

We see that E(Ñ) is positive G-local martingale

We prove, using that 〈m,S〉F is continuous, that for a G-martingale Ñ for every
F-martingale S we have

1

1− Z̃
11]τ,∞[ · [m,S] = [Ñ , S]

or equivalently E(Ñ)(S − Sτ ) is G-local martingale for each F-martingale S.
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General result

General result

We recall that a random set A is called evanescent if the set {ω, ∃t(ω, t) ∈ A] is P
null A random time τ is called a thin random time if its graph is contained in a
thin set, i.e., if there exists a sequence of F-stopping times (ϑn)∞n=1 with disjoint
graphs such that [[τ1]] ⊂ ⋃

n[[ϑn]].

Let τ be a random time satisfying Zτ < 1. Then, the following assertions are
equivalent:
(i) The thin set {Z̃ = 0 ∩ Z− > 0} is evanescent.
(ii) For any process S such that S − Sτ satisfies NUPBR(F), S − Sτ satisfies
NUPBR(G ).
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