RAMSEY RULES AND YIELDS CURVE DYNAMICS.

Caroline HILLAIRET, CMAP, Ecole Polytechnique

Joint work with Nicole El Karoui and Isabelle Camilier (UPMC, Stanford University), Working group on longevity risk with financial support of Fédération Bancaire Française

> "Advanced methods in mathematical finance", Angers - September 6, 2013

OUTLINE OF THE TALK

1 L[ONG TERM INTEREST RATES IN](#page-2-0) ECONOMICS

² F[INANCIAL INTERPRETATION OF THE EQUILIBRIUM](#page-10-0) [YIELD CURVE GIVEN BY THE](#page-10-0) RAMSEY RULE

³ I[NTERTEMPORALITY AND DYNAMIC UTILITY FUNCTIONS](#page-28-0)

OUTLINE

1 L[ONG TERM INTEREST RATES IN](#page-2-0) ECONOMICS

² F[INANCIAL INTERPRETATION OF THE EQUILIBRIUM](#page-10-0) [YIELD CURVE GIVEN BY THE](#page-10-0) RAMSEY RULE

I[NTERTEMPORALITY AND DYNAMIC UTILITY FUNCTIONS](#page-28-0)

MOTIVATIONS : DISCOUNTED LONG TERM PROJECT

- \triangleright Embedded long term interest rate risk in longevity-linked securities (maturity up to $30 - 50$ years.) Because of the lack of liquidity for long horizon, the standard financial point of view cannot be easily extended.
- Abundant literature on the economic aspects of long-term policy-making (Ekeland, Gollier, Weitzman...), often motivated by ecological issues (Hourcade & Lecocq).
	- Main question for cost-benefit analysis (Stern review)
	- Long term Horizon
	- More specific to ecological issues : substitutability between consumption good and environment

RAMSEY RULE: A LINK BETWEEN CONSUMPTION AND DISCOUNTING

- \triangleright Computation today of a long term discount factor $R_0(T)$.
- \triangleright A representative agent with:
	- *u* utility function for representative agent, often $u(c) = c^{1-\gamma}/(1-\gamma)$
	- θ pure time preference parameter
	- *c* aggregate consumption. Often a priori hypothesis are made on the form of the consumption function.

 \blacktriangleright Ramsey rule:

$$
R_0(T) = \beta - \frac{1}{T} \ln \mathbb{E}\left[\frac{u'(c_T)}{u'(c_0)}\right].
$$

[Financial interpretation of the equilibrium yield curve given by the Ramsey rule](#page-10-0) [Intertemporality and dynamic utility functions](#page-28-0)

 \blacktriangleright Very popular particular case (Ramsey, 1928):

$$
R_0(T)=\beta+\gamma g,
$$

β pure time preference parameter, γ risk aversion, *g* consumption growth rate.

Example : Stern review on climate change (2006), with $\gamma = 1$, $g = 1.3\%, \beta = 0.1\% \rightarrow R_0(T) = 1.4\%.$

 \triangleright Or $\gamma = 1, 5, g = 2\%, \beta = 0.1\% \rightarrow R_0(T) = 3.6\%$

- \triangleright Controversy between economists concerning parameters values. $R_0(T) = 1.4\%$: \$ 1 million in 100 years \rightarrow \$ 250,000 today. $R_0(T) = 3.5\%$: \$ 1 million in 100 years \rightarrow \$ 32,000 today.
- \triangleright small β = intergenerational equity

COX-INGERSOLL-ROSS (1985)

Equilibrium approach that determines the interest rate endogenously.

- \triangleright single consumption good
- \triangleright the production process follows a diffusion whose coefficients depend on an exogeneous stochastic factor *Y* influencing the economy.
- \triangleright investors are indifferent between an investment in the production opportunity and the risk-free instrument.
- \blacktriangleright all investors are identical, and share the same stochastic preference structure $U(t, c_t, Y_t)$
- lassic CRRA utility function $+$ CIR diffusion for *Y* \Rightarrow CIR dynamic for the risk free rate

AGGREGATION OF THE HETEROGENEITY

Jouini et al. (2008) : heterogeneous beliefs and anticipations, heterogeous time preference rates.

> Belief dispersions \Rightarrow additional risk or uncertainty \Rightarrow more saving ⇒ lower discount rate

Aggregation of individual beliefs and time-preferences

- \triangleright the more heteregenous are the agents, the lower is the discount rate.
- \triangleright the relevant asymptotic behavior in the long term is the one with the lowest discount rate.
- \triangleright the asymptotic equilibrium discount rate is given by the lowest individual discount rate.
- AIM : Extend the economic framework
	- \triangleright by taking into account the existence of a financial market
	- \triangleright by a dynamic and stochastic point of view

The method

- Introduce the financial market model (incomplete market)
- \triangleright Maximize the representative agent's utility on the aggregate consumption.
- $\triangleright \rightarrow$ Link with the yield curve, extension of the Ramsey rule.
- $\triangleright \rightarrow$ Link with Growth Optimal Portfolio. (Platen & Heath, 2006)

THE GROWTH OPTIMAL PORTFOLIO

The GOP is the portfolio maximizing the expected log utility from terminal wealth over all positive portfolio.

- \triangleright Approximation of the GOP by a diversified world stock index.
- \triangleright The GOP is a particularly robust portfolio on the long term The GOP outperforms the long term growth rate

$$
\limsup_{T \to +\infty} \frac{1}{T} \ln \left(\frac{X_T}{X_0} \right)
$$

- \triangleright The benchmark approach (Platen) uses the GOP as a benchmark/numeraire and historical probability measure as the pricing measure \rightarrow it is possible to use the GOP for pricing zeros-coupons.
- \Rightarrow The GOP seems to be a useful tool for the study of long term interest rate.

OUTLINE

1 L[ONG TERM INTEREST RATES IN](#page-2-0) ECONOMICS

² F[INANCIAL INTERPRETATION OF THE EQUILIBRIUM](#page-10-0) [YIELD CURVE GIVEN BY THE](#page-10-0) RAMSEY RULE

I[NTERTEMPORALITY AND DYNAMIC UTILITY FUNCTIONS](#page-28-0)

THE FINANCIAL MARKET

- Filtered probability space $(\Omega, \mathbb{F} = (\mathcal{F}_t)_{t>0}, \mathbb{P})$.
- \triangleright N-dimensional Brownian motion

Market Parameters : Incomplete market

- \blacktriangleright *M* risky assets, $M \leq N$.
- \blacktriangleright $(r_t)_{t>0}$, $(\theta_t)_{t>0}$, $(\sigma_t)_{t>0}$ adapted processes.
- \blacktriangleright $r_t > 0$ spot rate.
- \blacktriangleright θ_t market price of risk process.
- \blacktriangleright *σ_t* volatility process *M* × *N*. $\sigma_t \sigma_t^T$ invertible.

THE REPRESENTATIVE AGENT

F Representative agent, strategy (π, c) .

- \bullet *c*(.) : consumption rate.
- $\bullet \pi(.)$: fractions of the wealth invested in the risky asset. We set

$$
\kappa_t := \sigma_t^{\mathbf{T}} \pi_t.
$$

 \triangleright Constraints on the portfolio \Rightarrow Incompleteness of the market. $\kappa_t \in \mathcal{K}_t$ where \mathcal{K}_t adapted subvector spaces in \mathbb{R}^N . Typically $K_t = \sigma_t(\mathbb{R}^M)$, $M \leq N$.

 \blacktriangleright Self financing positive wealth process $X^{x,c,\kappa}(.)$ starting from $X_0^{x,c,\kappa} = x > 0$:

$$
dX_t^{x,c,\kappa} = -c_t dt + X_t^{x,c,\kappa} (r_t dt + \kappa_t (dW_t + \theta_t dt)),
$$

GROWTH OPTIMAL PORTFOLIO OR MARKET **NUMERAIRE**

State price density: A process *Y* is said to be a state price density (or adjoint process) if for any $\kappa \in \mathcal{K}$, $Y X^{x,0,\kappa}$ is a local martingale \Rightarrow there exists $\nu \in \mathcal{K}^{\perp}$: *dY*^ν

$$
\frac{dY_t}{Y_t^{\nu}} = -r_t dt - (\nu_t + \theta_t).dW_t, \ \nu_t \in \mathcal{K}_t^{\perp}
$$

 \triangleright The Growth Optimal Portfolio intrinsic to the market

$$
G_t^* = \exp(\int_0^t r_s + \frac{1}{2}||\theta_s||^2 ds + \int_0^t \langle \theta_s, dW_s \rangle).
$$

- \triangleright The Growth Optimal Portfolio is the portfolio maximizing the expected log utility from terminal wealth over all strictly positive portfolio (also known as market numeraire)
- \triangleright The GOP is the inverse of the "minimal" state price density

UTILITY MAXIMISATION OF THE REPRESENTATIVE AGENT

- **Representative agent** start with an initial wealth $x > 0$.
- \blacktriangleright Preference structure $(U(t, .), V(.))$, increasing and concave
- \triangleright **Primal problem** : the representative agent maximises his expected utility from terminal wealth and consumption over all (κ, c) admissible strategies [Karatzas & Shreve,1998].

$$
\max_{(\kappa,c)\in\mathcal{A}(x)}\mathbb{E}^{\mathbb{P}}\left[\int_0^{T_H}\underbrace{U(t,c_1)}_{example:U(t,c)=e^{-\beta t}u(c)}dt+V(X^{x,c,\kappa}_{T_H})\right].
$$

THE DUAL PROBLEM

Y^{ν} = state price density process

$$
\frac{dY_t^{\nu}(y)}{Y_t^{\nu}(y)} = -r_t dt - (\nu_t + \theta_t) dW_t, Y_0^{\nu}(y) = y, \nu_t \in \mathcal{K}_t^{\perp}.
$$

$$
\blacktriangleright Y_t^{\nu} X_t^{x,c,\kappa} + \int_0^t Y_s^{\nu} c_s ds \text{ local martingale.}
$$

 \triangleright Dual problem :

$$
\inf_{\nu \in \mathcal{K}^\perp} \mathbb{E}^\mathbb{P} \big[\int_0^{T_H} \tilde{U}(t, Y_t^{\nu}(y)) dt + \tilde{V}(Y_T^{\nu}(y)) \big].
$$

where \tilde{U} and \tilde{V} Fenchel transform of *V* and *V*, i.e.

$$
\tilde{U}(t, y) = \inf_{c>0} \{U(t, c) - cy\}.
$$

SOLUTION OF THE UTILITY MAXIMISATION PROBLEM

All optimal processes are depending on the horizon T_H of the problem, through the solution of the dual problem $\nu^{*,H}$.

- ► Solution of the primal problem : $(X^{*,H}(x), c^{*,H}(c_0))$
- Solution of the dual problem : $v^{*,H} \to Y^{v^{*,H}}(.) =: Y^{*,H}$
- \triangleright Optimal consumption path:

$$
Y_t^{*,H}(y) = U_c(t, c_t^{*,H}(c_0)) \text{ and } Y_{T_H}^{\nu^*}(y) = V_x(X_{T_H}^{*,H}(x)).
$$

 \triangleright Budget constraint :

$$
y=U_c(0,c_0)=V_x(x).
$$

EXAMPLE

Illustration of the time-unconsistency on the example of CRRA utility function $U(x) = \frac{x^{1-\gamma}}{1-\gamma}$ $\frac{x}{1-\gamma}$ with $0 < \gamma$.

- Incomplete market with 2 sources of uncertainty, generated by a 2 dimensional-Brownian motion (W^1, W^2) .
	- One riskless asset with dynamics $dS_t^0 = r_t S_t^0 dt$ where the short rate dynamics follows an Ornstein-Uhlenbeck process:

$$
dr_t = a(b - r_t)dt - \alpha dW_t^2.
$$

• One risky asset

$$
\frac{dS_t}{S_t} = r_t dt + \sigma (dW_t^1 + \eta_t dt)
$$

 $\sigma > 0$ constant, (η_t) deterministic.

 \triangleright The state price density processes satisfy

$$
\frac{dY_t^{\nu}}{Y_t^{\nu}} = -r_t dt + (\nu_t dW_t^2 + \eta_t dW_t^1)
$$

with $\nu \in \mathcal{R}^{\perp}$ the filtration generated by W^2

 \triangleright The optimal state price is determined by

$$
\nu_s^{*,T_H} = (\gamma - 1)\frac{\sigma}{a}(1 - e^{a(T_H - s)}).
$$

> \triangleright Link between the state price density process and the **marginal utility** from consumption.

$$
\frac{U_c(t,c_t^{*,H}(c_0))}{U_c(0,c_0)} = \exp(-\int_0^t r_s ds)\mathcal{E}(-\int_0^t \langle \theta_s + \nu_s^{*,H}(y), dW_s \rangle).
$$

 \triangleright We take the expectation under the historical probability :

$$
\mathbb{E}^{\mathbb{P}}\left[\frac{U_c(t,c_t^{*,H}(c_0))}{U_c(0,c_0)}\right] = \mathbb{E}^{\mathbb{P}}\left[\exp(-\int_0^t r_s ds)\mathcal{E}(-\int_0^t \langle \theta_s + \nu_s^{*,H}(y), dW_s \rangle)\right]
$$

If or more dynamically, thanks to the flow property, for $t \leq T \leq T_H$:

$$
\mathbb{E}^{\mathbb{P}}\left[\frac{U_c(T, c_T^{*,H}(c_t^{*,H}(c_0)))}{U_c(t, c_t^{*,H}(c_0))}|\mathcal{F}_t\right] = \mathbb{E}^{\mathbb{P}}\left[Y_{t,T}^{*,H}(y)|\mathcal{F}_t\right]
$$

=
$$
\mathbb{E}^{\mathbb{P}}\left[\exp(-\int_t^T r_s ds)\mathcal{E}(-\int_t^T \langle \theta_s + \nu_s^{*,H}(y), dW_s \rangle)|\mathcal{F}_t\right].
$$

with $Y_{t,T}^{*,H}(y) := \frac{Y_T^{*,H}(y)}{Y_T^{*,H}(y)}$ $Y_t^{*,H}(y)$

FINANCIAL INTERPRETATION OF THE EQUILIBRIUM YIELD CURVE I

For $t \leq T \leq T_H$

- ▶ $(B^m(t, T), t \leq T)$, *(m* for market) : price at time *t* of a zero coupon bond paying one unit of cash at maturity *T*.
- In finance, the yield curve is linked with the price of zero coupon bonds:

$$
B^m(t,T)=\exp(-R^m(t,T)(T-t)).
$$

AIM: Give a financial interpretation of the equilibrium yield curve given by the Ramsey rule.

RAMSEY RULE IN COMPLETE MARKET I

 \triangleright In a complete market:

 $\nu^* = 0$, the optimal processes do not depend on T_H .

$$
\mathbb{E}^\mathbb{P}\left[\frac{U_c(T,c_T^*(c_0))}{U_c(0,c_0)}\right] = \mathbb{E}^\mathbb{P}\big[\exp(-\int_0^T r_s ds)\overbrace{\mathcal{E}(-\int_0^T\langle \theta_s, dW_s\rangle)}^{\frac{d\mathbb{Q}}{d\mathbb{P}}}\big].
$$

 \blacktriangleright *B*^{*m*}(0, *T*) defined by

$$
B^m(0,T) = \mathbb{E}^{\mathbb{Q}}\left[\exp\left(-\int_0^T r_s ds\right)\right] = \mathbb{E}^{\mathbb{P}}\left[\frac{1}{y}Y_T^*(y)\right]
$$

where $\mathbb Q$ is the risk neutral probability measure (unique).

$$
B^m(0,T) = \mathbb{E}^{\mathbb{P}}\left[\frac{U_c(T,c_T^*(c_0))}{U_c(0,c_0)}\right].
$$

RAMSEY RULE IN COMPLETE MARKET II

 \blacktriangleright Financial yield curve:

$$
R^m(0,T) = -\frac{1}{T} \ln \mathbb{E}^{\mathbb{P}} \left[\frac{U_c(T, c_T^*(c_0))}{U_c(0, c_0^*)} \right],
$$

$$
R^m(t,T) = -\frac{1}{T-t} \ln \mathbb{E}^{\mathbb{P}} \left[\frac{U_c(T, c_T^*(c_0))}{U_c(t, c_t^*(c_0))} | \mathcal{F}_t \right].
$$

- \triangleright This formula still holds in incomplete market in the case of replicable Zero coupons with an admisible self financing portfolio.
- ► Example : with time separable utility $U(t, c) = e^{-\beta t}u(c)$.

$$
R^m(t,T) = \beta - \frac{1}{T-t} \ln \mathbb{E}^{\mathbb{P}} \left[\frac{u'(c_T^*(c_0))}{u'(c_t^*(c_0))} | \mathcal{F}_t \right].
$$

RAMSEY RULE IN COMPLETE MARKET III

Remark: Intrinsic formulation

 \triangleright Price of zero-coupons inferred from Growth Optimal Portfolio [Platen]

$$
\frac{B^{G}(t,T)}{G_{t}^{*}}=\mathbb{E}^{\mathbb{P}}\left[\frac{1}{G_{T}^{*}}|\mathcal{F}_{t}\right].
$$

 \blacktriangleright Ramsey rule

$$
R^m(t,T) = -\frac{1}{T-t} \log \mathbb{E}^{\mathbb{P}} \left[\frac{U_c(T,c_T^*(c_0))}{U_c(t,c_t^*(c_0))} | \mathcal{F}_t \right] = -\frac{1}{T-t} \ln \mathbb{E}^{\mathbb{P}} \left[\frac{G_t^*}{G_T^*} | \mathcal{F}_t \right]
$$

Approximated with market data

INCOMPLETE MARKET

In a incomplete market :

$$
\mathbb{E}^{\mathbb{P}}\left[\frac{U_c(T,c_T^{*,H}(c_0))}{U_c(t,c_t^{*,H}(c_0))}|\mathcal{F}_t\right] = \mathbb{E}^{\mathbb{Q}^{\nu^{*,H}(y)}}[\exp(-\int_t^T r_s ds)|\mathcal{F}_t].
$$

$$
\frac{d\mathbb{Q}^{\nu^{*,H}(y)}}{d\mathbb{P}}\Big|_{\mathcal{F}_t} = \mathcal{E}(-\int_0^t \langle \theta_s + \nu_s^{*,H}(y), dW_s \rangle).
$$

The "pricing" probability $\mathbb{Q}^{\nu^{*,H}(y)}$ is not universal and might depend on

- \blacktriangleright the maturity T_H
- \blacktriangleright the utility function
- \triangleright the wealth *y* in the economy

PRICING RULE IN INCOMPLETE MARKET

Indifference pricing :

- If Utility indifference price of a positive claim ζ_{T_H} = the cash amount *p* for which the investor is indifferent between investing optimally a certain quantity *q* in the claim and investing optimally in the market without the claim but endowed with an extra amount *p* of money:
- $(p_t)_{t \in [0,T]}$ determined by the non linear relationship $\mathcal{U}^{\zeta}(t, X_t - p_t, q) = \mathcal{U}(t, X_t^*), \quad \text{for all } t \in [0, T_H].$ with $\mathcal{U}^{\zeta}(t,X_t,q) \quad := \sup_{(\kappa,c) \in \mathcal{A}(t,X_t)} \mathbb{E}[V(X_{T_H}^{\kappa} + q\zeta_{T_H}) + \int_t^{T_H} U(s,c_s)ds | \mathcal{F}_t],$ $\mathcal{U}(t,X_t) \quad := \sup_{(\kappa,c) \in \mathcal{A}(t,X_t)} \mathbb{E}[V(X_{T_H}^{\kappa}) + \int_t^{T_H} U(s,c_s) ds | \mathcal{F}_t], \quad t \leq T_H$
- If $q > 0$ (resp. $q < 0$) $p =: p^b$ is a buying (resp. $p =: p^s$ is a selling) indifference price
- If non-linear pricing rule and provides a price range $[p_t^b(q), p_t^s(q)]$.

I

UTILITY DAVIS PRICE: A FAIR PRICE FOR SMALL TRANSACTIONS

When the agents are aware of their sensitivity to the unhedgeable risk, they can try to transact for only a little amount in the risky contract.

 \triangleright Davis price or marginal utility price, which corresponds to the zero marginal rate of substitution \hat{p}_t :

$$
\partial_q \mathbb{E}[V(X_{T_H}^{*,H}) + q\zeta_{T_H}) + \int_t^{T_H} U(s, c_s^{*,H}) ds |\mathcal{F}_t|_{|_{q=0}} =
$$

$$
\partial_q \mathbb{E}[V(X_t^{*,H} - qp_t) + \int_t^{T_H} U(s, c_s^{*,H}) ds |\mathcal{F}_t|_{|_{q=0}}.
$$

$$
\widehat{p}_t = \frac{\mathbb{E}[V_x(X_{T_H}^{*,H})\zeta_{T_H}|\mathcal{F}_t]}{\mathbb{E}[V_x(X_{T_H}^{*,H})|\mathcal{F}_t]} = \mathbb{E}(\zeta_{T_H}Y_{t,T_H}^{*,H}(y)|\mathcal{F}_t)
$$

If the maturity of the claim is $T < T_H$, $\zeta_{T_H} = \zeta_T e^{\int_T^T H r_s ds}$ and

$$
\widehat{p}_t = \mathbb{E}(\zeta_T Y_{t,T}^{*,H}(y)|\mathcal{F}_t).
$$

RAMSEY RULE IN INCOMPLETE MARKET

- \triangleright Davis price is a linear pricing rule.
- \triangleright Using Davis prices means that there exists a consensus at this price for a small amount, but investors are not sure to have liquidity at this price.
- \blacktriangleright The price $B^{m,u}(t,T)$ at time *t* of a Zero-Coupon bond with maturity *T*, using Davis rule, is defined by $B^{m,u}(t,T) = \mathbb{E}^{\mathbb{P}}\left[Y_{t,T}^{*,H}(y)|\mathcal{F}_t\right]$ and satisfies

$$
B^{m,u}(t,T) = \mathbb{E}^{\mathbb{P}} \left[\frac{U_c(T, c_T^{*,H}(c_0))}{U_c(t, c_t^{*,H}(c_0))} | \mathcal{F}_t \right].
$$

 \triangleright Ramsey rule may = yield curve "marginal indifference pricing"

$$
R^{m,u}(t,T) = -\frac{1}{T-t} \ln \mathbb{E}\left[\frac{U_c(T,c_T^{*,H}(c_0))}{U_c(t,c_t^{*,H}(c_0))}|\mathcal{F}_t\right], \quad 0 \le t < T \le T_H.
$$

- \triangleright Acceptable for small trade
- \triangleright for large trade use a second order correction term depending on the size of the trade

DYNAMIC OF ZERO-COUPONS PRICE AND LINK WITH THE GOP

• Price of zero-coupons inferred from GOP [Platen] (the GOP is used as a numeraire) :

$$
\frac{\mathcal{B}^G(t,T)}{G^*_t} = \mathbb{E}^{\mathbb{P}}\left[\frac{1}{G^*_T} | \mathcal{F}_t \right].
$$

 \triangleright Link with the price of zeros-coupons :

$$
B^{m,u}(t,T) = B^{G}(t,T) \mathbb{E}^{\mathbb{Q}_T^G} \left[\mathcal{E} \left(- \int_t^T \langle \nu_s^{*,H}(\mathbf{y}), dW_s \rangle \right) | \mathcal{F}_t \right],
$$

where \mathbb{Q}_T^G is similar as a forward neutral probability measure :

$$
\frac{d\mathbb{Q}_T^G}{d\mathbb{P}}|_{\mathcal{F}_T} = \frac{1/G_T^*}{\mathbb{E}^{\mathbb{P}}[1/G_T^*]}.
$$

OUTLINE

1 L[ONG TERM INTEREST RATES IN](#page-2-0) ECONOMICS

² F[INANCIAL INTERPRETATION OF THE EQUILIBRIUM](#page-10-0) [YIELD CURVE GIVEN BY THE](#page-10-0) RAMSEY RULE

³ I[NTERTEMPORALITY AND DYNAMIC UTILITY FUNCTIONS](#page-28-0)

DYNAMIC UTILITY FUNCTIONS FROM CONSUMPTION AND TERMINAL WEALTH I

- In the presence of generalized long term uncertainty, the decision scheme must evolve: the economists agree on the necessity of a sequential decision scheme that allows to revise the first decisions according to the evolution of the knowledge and to direct experiences.
- \triangleright AIM : Extend the previous results to the case of dynamic utility functions to take into account that the preferences of the agent may changes with time.
- \blacktriangleright AIM : To get rid of the dependency on the maturity T_H .
- **References: Musiela & Zariphopoulou, El Karoui & Mrad (dynamic** utility functions from terminal wealth), Berrier & Rogers & Tehranchi (dynamic utility functions from consumption and terminal wealth).

DYNAMIC UTILITY

Definition of Dynamic Utility A progressive utility is a positive family $U = \{U(t; x) : t \geq 0; x \geq 0\}$

- Progressivity : for any $x > 0$, $t \to U(t; x)$ is a progressive random field
- ▶ Concavity : for $t > 0$, $x > 0$ → $U(t; x)$ is an increasing concave function.
- Inada condition : $U(:,x)$ is a C^2 -function with marginal utility $U_x(:,:)$, decreasing from $+\infty$ to 0.
- Initial condition : $U(0, x) =: u$ a deterministic positive C^2 -utility function with Inada condition

CONSISTENT DYNAMIC UTILITY

Let A be a convex family of non negative portfolios, called Test porfolios. A A-consistent dynamic utility system of investment and consumption is a pair of progressive dynamic utilities U and V on $\Omega \times [0, +\infty) \times \mathbb{R}^+$ with the following additional properties:

 \triangleright Consistency with the test-class: For any admissible wealth process $X^{\kappa,c} \in \mathcal{A}$,

$$
\mathbb{E}(V(t,X_t^{\kappa,c})+\int_s^tU(s,c_s)ds|\mathcal{F}_s)\leq V(s,X_s^{\kappa,c}),\ \forall s\leq t\ a.s.
$$

That is, the process $(V(t, X_t^{\kappa,c}) + \int_s^t U(s, c_s) ds)$ is a supermartingale.

Existence of optimal strategy: For any initial wealth $x > 0$, there exists an optimal strategy (κ^*, c^*) such that the associated non negative wealth process $X^* = X^{\kappa^*, c^*} \in A$ issued from *x* satisfies $(V(t, X_t^*) + \int_0^t U(s, c_s^*) ds)$ is a local martingale.

DUAL DYNAMIC UTILITY

Proposition : Pair of Dual dynamic utility functions.

- In The conjugate utility $\tilde{U}(t, y)$ and $\tilde{V}(t, y)$ are decreasing convex stochastic flow.
- \triangleright For all state price density processes $Y^{\nu}(y)$, the following process is a submartingale:

$$
\tilde{V}(t, Y_t^{\nu}(y)) + \int_0^t \tilde{U}(s, Y_s^{\nu}(y))ds.
$$
 (1)

Existence of an optimum ν^* , such that

$$
\tilde{V}(t, Y_t^{\nu^*}(y)) + \int_0^t \tilde{U}(s, Y_s^{\nu^*}(y))ds
$$

is a martingale.

DYNAMIC UTILITY AND RAMSEY RULE

 \triangleright Optimal consumption and wealth paths:

$$
Y_t^*(y) := Y_t^{\nu^*}(y) = U_c(t, c_t^*(c_0)) = V_x(t, X_t^*(x)).
$$

with

$$
y = U_c(0, c_0) = u_c(c_0)
$$

= $V_x(0, x) = v_x(x)$

 \triangleright The yield curve (marginal indifference pricing) in the case of dynamic utility does not depend on the horizon T_H , even in the case of incomplete market :

$$
R^{m,u}(0,T) = -\frac{1}{T} \ln \mathbb{E}^{\mathbb{P}}\left[\frac{U_c(T,c_T^*(c_0))}{U_c(0,c_0)}\right] = -\frac{1}{T} \ln \mathbb{E}^{\mathbb{P}}\left[\frac{Y_T^*(y)}{y}\right].
$$

$$
R^{m,u}(t,T) = -\frac{1}{T-t} \ln \mathbb{E}\left[\frac{U_c(T,c_T^*(c_0))}{U_c(t,c_t^*(c_0))}\big| \mathcal{F}_t\right] = -\frac{1}{T-t} \ln \mathbb{E}^{\mathbb{P}}\left[Y_{t,T}^*(y)\big| \mathcal{F}_t\right].
$$

► Note the key role of the process $(Y_t^*(y))_{t\geq 0}$ to compute the yield curve.

CONCLUSION

- \triangleright Numerics (approximation of the Growth Optimal Portfolio)
- \triangleright Different beliefs of the agents
- \triangleright Calibration of dynamics utilities

BIBLIOGRAPHY

- ā. [1] Ivar Ekeland. Discounting the future: the case of climate change. Lecture Notes 2009.
- ā. [2] Nicole El Karoui, Mohamed M'Rad : An Exact Connection between two Solvable SDEs and a Non Linear Utility Stochastic PDEs, (2012) to appear.
- 譶 [3] Christian Gollier. The consumption-based determinants of the term structure of discount rates. Mathematics and Financial Economics, 1(2):81-101, July 2007.
- 螶 [4] Elyès Jouini, Jean-Michel Marin, and Clotilde Napp. Discounting and divergence of opinion. Journal of Economic Theory, 145:830-859, 2010.
- 螶 [6] Franck Lecocq and Jean-Charles Hourcade. Le taux d'actualisation contre le principe de précaution? Lecons partir du cas des politiques climatiques.
- 螶 [7] E. Platen and D. Heath. A Benchmark Approach to Quantitative Finance. Springer Finance, Springer-Verlag, Berlin, 2006.