Mean-Variance Portfolio Selection with Uncertain Drift and Volatility

Ying Hu

IRMAR, Université Rennes 1, FRANCE <http://perso.univ-rennes1.fr/ying.hu/>

Joint work in progress with Hanqing Jin (University of Oxford) Angers, September 2013

Model

The randomness is described by a filtered probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$, where a *d*-dim Brownian motion W_t is defined and $\mathcal{F}_t = \mathcal{F}_t^W$. The market consists of $n + 1$ assets traded in a finite time horizon $[0, T]$. The first asset is a risk-free one with price $S_t^0 = e^{\int_0^t r_s ds}$. The other assets are risky

$$
dS_t^i = \mu_t^i S_t^i dt + \sum_{j=1}^d \sigma_t^{i,j} S_t^i dW_t^j.
$$

Notice that $\mu^i, \sigma^{i,j}$ are all \mathcal{F}_t^W -adapted. But the corresponding (deterministic functional) may not be known, which brings uncertainty into the model. The uncertainty is generally described as $(b_t, \sigma_t) \in A_t$ for some uniformly bounded set-valued process $A_t: (t, \omega) \mapsto \mathbb{R}^n \times \mathbb{R}^{n \times d}$. We denote the set of all these (b, σ) as Γ . We model an investment as a self-financing portfolio π , which is adapted and square-integrable. Its wealth process *X*· satisfies

$$
dX_t = [r_t X_t + \pi'_t b_t] dt + \pi'_t \sigma_t dW_t.
$$

Problem

Hence the market parameters consist of (T, r, W, S, A) other than the probability space, which satisfies

Assumption

- (1) *r*. is deterministic and bounded, $T \in \mathbb{R}^+$ is deterministic.
- (2) *W*· is a standard *d*-dim Brownian motion.
- (3) A_t is an \mathcal{F}_t -adapted, uniformly bounded set-valued process in $\mathbb{R}^n \times \mathbb{R}^{n \times d}$.
- (4) S_t is generated by the SDE for some adapted process with $(b_t, \sigma_t) \in A_t$.

We aims at the search of admissible portfolios to optimize the bi-objective

$$
\inf_{\pi} \sup_{(b,\sigma)\in\Gamma} (\text{Var}(X_T), -E[X_T]).
$$

Problem Setting

If there is no uncertainty on *b*., then $A_t = \{b_t\} \times A_t^{\sigma}$, for some uniformly bounded, \mathcal{F}_t^W -adapted set-valued process $A_t^\sigma : (t, \omega) \mapsto \mathbb{R}^{n \times d}$. We focus on this case in this section. In this case,

$$
\mathbb{E}[X_T] = x_0 + \int_0^T \mathbb{E}[r_t X_t + \pi'_t b] dt.
$$

If r_t is deterministic, we can see that $\mathbb{E}[X_T]$ does not depend on σ , hence we can formulate the mean-variance problem as $\inf_{\pi} \sup_{\sigma} \mathbb{E}[(X_T - \lambda)^2]$. We assume $r \equiv 0$ without loss of generality.

Define $Y_t = X_t - \lambda$, then the problem turns to

$$
\inf_{\pi} \sup_{\sigma} \mathbb{E}[Y_T^2]
$$

s.t.
$$
dY_t = \pi_t' b_t dt + \pi_t' \sigma_t dW_t, \ Y_0 = y_0 := x_0 - \lambda.
$$
 (1)

It is easy to see that for $y_0 = 0$, the optimal portfolio is $\pi^* = 0$, and the optimal value is 0.

Proposition

For any π , define $\hat{\pi}_t = \pi_t \mathbf{1}_{t \leq \tau}$ with $\tau = \inf\{t \in [0, T] : Y_t = 0\}$ (with the convention inf $\emptyset = +\infty$, then $\hat{\pi}$ is better than π , and strictly better if $\pi \not\equiv \hat{\pi}$.

This proposition shows that we only need to consider the portfolio $\pi_t = y_t u_t$ for some process *u*_c, for which the objective value will be $c(\pi)y_0^2$. Hence the optimal value must be in the form Py_0^2 for some constant *P*.

Hamiltonian and BSDE

Denote

$$
H(P, p, u, \sigma) := Pu'\sigma\sigma'u + 2(\sigma p + Pb)'u,
$$

\n
$$
H(P, p, u) = \sup_{\sigma} H(P, p, u, \sigma),
$$

\n
$$
F_1(P, p) = \inf_u H(P, p, u).
$$

Then $H(P, p, u, \sigma) \leq H(P, p, u)$ and $H(P, p, u) \geq F_1(P, p)$ for any P, p, u, σ . Define

$$
dP_t = -F_1(P_t, p_t)dt + p_t dW_t, P_T = 1.
$$

Solution 1

Then for any control $\pi_t = u_t Y_t$, denote Y_t^{*u} as the state process for π under $\sigma^*(u_t)$, then

$$
d\mathbb{E}[P_t Y_t^2] = \mathbb{E}\left[P_t \pi_t' \sigma_t \sigma_t' \pi_t + 2P_t Y_t b_t' \pi_t + 2Y_t p_t' \sigma_t' \pi_t - Y_t^2 F_1(P_t, p_t)\right] dt
$$

\n
$$
\mathbb{E}[Y_T^2] = P_0 Y_0^2 + \mathbb{E} \int_0^T Y_t^2 \left[H(P_t, p_t, u_t, \sigma_t) - F_1(P_t, p_t)\right] dt
$$

\n
$$
\sup_{\sigma} \mathbb{E}[Y_T^2] = P_0 Y_0^2 + \sup_{\sigma} \mathbb{E} \int_0^T Y_t^2 \left[H(P_t, p_t, u_t, \sigma_t) - F_1(P_t, p_t)\right] dt
$$

\n
$$
\geq P_0 Y_0^2 + \mathbb{E} \int_0^T (Y_t^{*u})^2 \left[H(P_t, p_t, u_t) - F_1(P_t, p_t)\right] dt
$$

\n
$$
\geq P_0 Y_0^2
$$

Hence $\inf_u \sup_{\sigma} \mathbb{E}[Y_T^2] \ge P_0 Y_0^2$.

Solution 2

$$
\sup_{\sigma} \mathbb{E}[Y_T^2] = P_0 Y_0^2 + \sup_{\sigma} \mathbb{E} \int_0^T Y_t^2 [H(P_t, p_t, u_t, \sigma_t) - F_1(P_t, p_t)] dt
$$

\n
$$
\leq P_0 Y_0^2 + \sup_{\sigma} \mathbb{E} \int_0^T Y_t^2 [H(P_t, p_t, u_t) - F_1(P_t, p_t)] dt
$$

\n
$$
\inf_{u} \sup_{\sigma} \mathbb{E}[Y_T^2] \leq P_0 Y_0^2 + \inf_{u} \sup_{\sigma} \mathbb{E} \int_0^T Y_t^2 [H(P_t, p_t, u_t) - F_1(P_t, p_t)] dt
$$

\n
$$
\leq P_0 Y_0^2 + \inf_{u} \sup_{\sigma} \mathbb{E} \int_0^T Y_t^2 [H(P_t, p_t, u_t^*) - F_1(P_t, p_t)] dt
$$

\n
$$
= P_0 Y_0^2.
$$

where $\pi_t^* = u_t^* Y_t^*$ achieves all equalities.

Main result 1

To summarize the result, we have the following theorem.

Theorem

The optimal portfolio is $\pi_t^* = u_t^*(X_t - \lambda)$ *, and the optimal value of the problem is* $V = P_0(x_0 - \lambda)^2$, where (P, p) *is the unique solution of BSDE*

$$
\begin{cases}\n dP_t = -F_1(P_t, p_t)dt + p_t dW_t, \\
 P_T = 1\n\end{cases}
$$

 $and u^*(t) = \text{argmin } H(P_t, p_t).$

Uncertain drift and volatility; Problem Setting 1

In this case, $\mathbb{E}[X_T]$ is also unknown, so we cannot formulate the mean-variance as to minimize $\mathbb{E}[X_T^2 - 2\lambda X_T]$.

In this case, we turn to study the generalization of an equivalent form of mean-variance problem. Recall that when $\mathbb{E}[X_T - x_0e^{\int_0^T r ds}]\geq 0$, the mean-variance problem is equivalent to maximize the Sharpe ratio $E[X_T - x_0 e^{\int_0^T r ds}]$ $\frac{-x_0 e^{y_0}}{\text{Var}(X_T)}$. In this circumstance, we take the Sharpe ratio (or its square) as our objective, and consider the problem

$$
\inf_{\pi} \sup_{\sigma} \frac{\text{Var}\left(X_T - x_0 e^{\int_0^T r ds}\right)}{(\mathbb{E}[X_T - x_0 e^{\int_0^T r ds}])^2},
$$

where $X_T - x_0 e^{\int_0^T r ds}$ is the excess return against the risk-free investment.

Problem Setting 2

Denote $Y_t = X_t - x_0 e^{\int_0^t r ds}$, then

$$
dY_t = [rY_t + \pi'_t b]dt + \pi'_t \sigma dW_t, \quad Y_0 = 0.
$$

The problem can be written as

$$
\inf_{\pi} \sup_{\sigma} \frac{\text{Var}(Y_T)}{(\mathbb{E}[Y_T])^2} = \frac{\mathbb{E}Y_T^2}{(\mathbb{E}[Y_T])^2} - 1, \quad s.t. \inf_{b,\sigma} \mathbb{E}Y^2 \ge 1.
$$
 (2)

It is easy to see that the constraint is nothing but $Y \neq 0$, so that the Sharpe ration is well defined.

This problem is strongly connected to the following problem:

$$
\inf_{\pi} \sup_{\sigma} \mathbb{E}[Y_T^2] - \lambda (\mathbb{E}Y_T)^2, \quad s.t. \inf_{b,\sigma} \mathbb{E}Y_T^2 \ge 1.
$$
 (3)

Connection of 2 problems

Proposition

Denote the optimal value for Problem [\(2\)](#page-10-0) as *R*. Denote $\Gamma = \{ \pi : \inf_{b,\sigma} \mathbb{E}[Y_T^2] \ge 1 \}.$ Then

(i) For any $\lambda < R + 1$, $\inf_{\pi \in \Gamma} \sup_{b,\sigma} \mathbb{E} Y_T^2 - \lambda (\mathbb{E} Y_T)^2 \geq 0$. (ii) If $\sup_{b,\sigma} \mathbb{E} Y_T^2 - \lambda (\mathbb{E} Y_T)^2 > 0$ for any $\pi \in \Gamma$, then $\lambda \leq R + 1$.

Hamiltonian and Assumption

Now we suppose $r \equiv 0$, and turn to Problem [\(3\)](#page-10-1) with a fixed number $\lambda > 1$. Define

$$
H(x, \pi, \sigma, b) := \pi' \sigma \sigma' \pi + 2x\pi' b,
$$

\n
$$
H(x, \pi) := \sup_{b, \sigma} H(x, \pi, \sigma, b)
$$

\n
$$
H(x) := \inf_{\pi} H(x, \pi).
$$

By changing variable $\pi \to x\pi$, we can see that $H(x) = c_t x^2$, where $c_t = \inf_{\pi} \sup_{b,\sigma} \pi' \sigma \sigma \pi + 2\pi' b.$

Assumption

$$
\int_0^T c_s ds > -\infty.
$$

Riccati equation and its solvability

Define the function $P_t = e^{\int_t^T c_s ds}$, which satisfies the ODE

$$
dP_t = -c_t P_t dt, P_T = 1.
$$

The following Riccati equation will be critical for Problem [\(3\)](#page-10-1):

$$
\begin{cases}\ndQ_t = \left[-2c_tQ_t - c_te^{-\int_t^T c_s ds} Q_t^2 \right] dt, \\
Q_T = -\lambda.\n\end{cases}
$$
\n(4)

Lemma

The ODE [\(4\)](#page-13-0) admits a finite solution in the interval $t \in [t_0, T]$ if and only if $\lambda < \frac{1}{\sqrt{2}}$ $\frac{1}{1-e^{\int_{t_0}^T c_s ds}}$.

Result for Problem (3)

Theorem

(1) If
$$
\lambda < \frac{1}{1-e^{\int_0^T c_s ds}}
$$
, then
\n
$$
\sup_{\sigma} J(\pi, \sigma, b) > 0, \quad \forall \pi \neq 0.
$$
\n(2) If $\lambda \ge \frac{1}{1-e^{\int_0^T c_s ds}}$, then
\n
$$
\inf_{\pi} \sup_{b,\sigma} J(\pi, \sigma, b) = -\infty.
$$

Problem (2)

From the last section, we know the optimal value for [\(2\)](#page-10-0) is

$$
R = \frac{1}{1 - e^{\int_0^T c_s ds}} - 1.
$$

Proposition [4](#page-11-0) does not provide any information on how to get the optimal π for Problem [\(2\)](#page-10-0). To find the optimal portfolio, we turn to another approach.

Main Result 2

Theorem

Let us suppose that for each b_t , σ_t , there exists a θ_t such that $\sigma_t \theta_t = b_t$. Then *the optimal portfolio is:*

$$
\pi_t^* = \{\mu E[\eta_{\theta^*}(T)^2] - Y_t^*\}(\sigma_t^*(\sigma_t^*)')^{-1}\sigma_t^*,
$$

where

$$
\theta_t^* = \operatorname{argmin}_{\sigma_t v = b_t} |v|^2,
$$

and

$$
\eta_{\theta^*}(t) = e^{-\int_0^t \theta_s^{*2}/2ds - \int_0^t \theta_s^{*'} dW_s}.
$$

Proof.

We have

$$
\inf_{\pi} \sup_{b,\sigma} \frac{\mathbb{E}[Y_T^2]}{(\mathbb{E}[Y_T])^2} = \sup_{b,\sigma} \inf_{\pi} \frac{\mathbb{E}[Y_T^2]}{(\mathbb{E}[Y_T])^2}
$$

if and only if

$$
\inf_{\pi} \sup_{b_t, \sigma_t} \pi' \sigma \sigma' \pi + 2\pi' b = \sup_{b_t, \sigma_t} \inf_{\pi} \pi' \sigma \sigma' \pi + 2\pi' b.
$$

The last swap holds if for each b_t , σ_t , there exists a θ_t such that $\sigma_t \theta_t = b_t$. $\overline{}$