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The aim is to study the time discretization of the (decoupled)
forward backward system

Xt = x +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs, 0 6 t 6 T ,

Yt = g(XT ) +

∫ T

t
f (Zs)dr −

∫ T

t
ZsdWs, 0 6 t 6 T ,

when f has a quadratic growth with respect to z.
Standard assumption : f is assumed to be locally Lipschitz∣∣f (z)− f (z ′)

∣∣ 6 K
∣∣z − z ′

∣∣ (1 + |z|+
∣∣z ′∣∣) .
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Assumptions

g Lipschitz and bounded,
σ(t , x) Lipschitz and unbounded.

Other assumptions :
When g is not smooth see [R. 2011], [E. Gobet - P.
Turkedjiev Preprint],
when g is unbounded see [R. 2012].
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Existence and uniqueness

Thanks to [Kobylanski 2000] we have :
Since g is bounded there exists a solution (Y ,Z ) such that
Y is bounded.
Since f is locally Lipschitz we have a uniqueness result
among bounded solutions.(∫ t

0 ZsdWs

)
t∈[0,T ]

is a BMO martingale :

‖Z ∗W‖2BMO = sup
06τ6T stopping time

Eτ

[∫ T

τ
|Zs|2 ds

]
< +∞.
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The linearization trick

Let us consider two solutions (Y 1,Z 1), (Y 2,Z 2) for two terminal
conditions g1, g2 and two generators f1, f2. We denote

δY := Y 1−Y 2, δZ := Z 1−Z 2, δg := g1−g2, δf := f1− f2.

We have

δYt = δg(XT ) +

∫ T

t
δf (Z 1

s )ds −
∫ T

t
δZs (dWs − γsds) ,

with

γs = δZs
f2(Z 1

s )− f2(Z 2
s )

|δZs|2
.
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Why BMO martingales are nice ?

Let us denote E(γ) the Doléans-Dade exponential associated
to the martingale (

∫ t
0 γsdWs)t . Since |γs| 6 C(1 +

∣∣Z 1
s
∣∣+
∣∣Z 2

s
∣∣),

we have

‖γ ∗W‖2BMO 6 C(1 +
∥∥∥Z 1 ∗W

∥∥∥2

BMO
+
∥∥∥Z 2 ∗W

∥∥∥2

BMO
) < +∞.

E(γ) is a martingale.
E(γ) ∈ Lp with p > 1 that depends only on ‖γ ∗W‖BMO.
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Comparison and stability

Comparison :

δYt = EQ
t

[
δg(XT ) +

∫ T

t
δf (Z 1

s )ds

]
.

Stability :

|δYt |q 6 CEt

[
|δg(XT )|q +

∣∣∣∣∣
∫ T

t
δf (Z 1

s )ds

∣∣∣∣∣
q]
.
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Time discretization scheme

Let us consider a grid 0 = t0 < t1 < ... < tn = T with
hi = ti+1 − ti and h = maxi hi . (X n

i )i discrete approximation of X
with “good” convergence properties. (Y n

i ,Z
n
i )i solution of the

scheme 
Y n

n = g(X n
n )

Y n
i = Eti [Y

n
i+1 + hi f (Z n

i )]

Z n
i = Eti [Y

n
i+1Hi ]

with Hi =
Wti+1−Wti

hi
= ∆Wi

hi
.
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Linearization of time discretization schemes

Let us consider two discretized solutions (Y 1,Z 1), (Y 2,Z 2) for
two terminal conditions g1, g2 and two generators f1, f2.

δY := Y 1−Y 2, δZ := Z 1−Z 2, δg := g1−g2, δf := f1− f2.

We have

δYi = Eti [δYi+1 + hi(f1(Z 1
i )− f2(Z 1

i )) + hi(f2(Z 1
i )− f2(Z 2

i ))]

= Eti [δYi+1 + hiδf (Z 1
i ) + hiγiδZi ],

with

γi = δZi
f2(Z 1

i )− f2(Z 2
i )

|δZi |2
.

Since, δZi = Eti [HiδYi+1], we have

δYi = Eti [(1 + hiγiHi)(δYi+1 + hiδf (Z 1
i ))]

= Eti

n−1∏
j=i

(1 + hjγjHj)

(
δg(X n

n ) +
n−1∑
k=i

hkδf (Z 1
k )

) .
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New assumptions for comparison and stability

Et =
∏

tj6t (1 + hjγjHj) is the Doléans-Dade exponential of
the martingale Mt :=

∑
ti6t hiγiHi .

To have Et > 0, we need to have (γi)i and (Hi)i bounded.

We take HR
i = ρR(∆Wi )

hi
with R well chosen.

For γi we need to truncate f .
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Truncation of the initial BSDE

Let us denote (Y N ,Z N) the solution of the BSDE

Y N
t = g(XT ) +

∫ T

t
f (ρN(Z N

s ))ds −
∫ T

t
Z N

s dWs,

and (Y π,Zπ) the solution of the scheme
Y π

n = g(X n
n )

Y π
i = Eti [Y

π
i+1 + hi f (ρN(Zπ

i ))]

Zπ
i = Eti [Y

π
i+1HR

i ].

N and R will depend on n.
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Error due to the truncation

[P. Imkeller - G. dos Reis 2010], [A. R. 2012]
For all q > 0, there exists Cq > 0 such that

E

[
sup

06t6T

∣∣∣Yt − Y N
t

∣∣∣2]+ E

[∫ T

0

∣∣∣Zs − Z N
s

∣∣∣2 ds

]
6

Cq

Nq .
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Application of the comparison result

By taking R and N such that

Et =
∏
tj6t

(1 + hjγ
N
j HR

j ) > 0

we obtain a comparison theorem.

Corollary

|Y π| 6 C with C that does not depend on n, N, R.
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Stability

We will study the error between (Y N ,Z N) and (Y π,Zπ) by
using our stability result on schemes. We need to write the
initial BSDE as a perturbed time discretization scheme.

Y N
tn = g(XT )

Y N
ti = Eti [Y

N
ti+1

+
∫ ti+1

ti
f (ρN(Z N

s ))ds]

= Eti [Y
N
ti+1

+ hi

(
f (ρN(Z̄ N

ti )) + ζi

)
]

Z̄ N
ti = Eti [Y

N
ti+1

HR
i ]

with

ζi :=
1
hi
Eti

[∫ ti+1

ti

(
f (ρN(Z N

s ))− f (ρN(Z̄ N
ti ))
)

ds
]
.
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Stability

If we apply the linearization trick to (Y N ,Z N) and (Y π,Zπ) we
obtain

Y N
ti −Y π

i = Eti

n−1∏
j=i

(1 + hjγ
N
j HR

j )

(
g(XT )− g(X n

n ) +
n−1∑
k=i

hkζk

) .
Proposition

Mt :=
∑

ti6t hiγ
N
i HR

i is a BMO martingale. Moreover, ‖M‖BMO is
bounded by a constant that does not depend n, N and R.
Finally, there exists q > 1 independent of N, n and R such that

∣∣∣Y N
ti − Y π

i

∣∣∣q 6 Eti

|g(XT )− g(X n
n )|q +

∣∣∣∣∣
n−1∑
k=i

hkζk

∣∣∣∣∣
q .
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An explicit speed of convergence

Theorem
hi = T/n = h,

HR
i = ρR(∆Wi )

h with R = log n,

N = n1/4.

Then, for all η > 0 we have

E

[
sup

06i6n
|Yti − Y π

i |
2

]
+ E

[
n−1∑
i=0

∫ ti+1

ti
|Zs − Zπ

i |
2 ds

]
6 Cηh1−η.
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Example

X is a geometric Brownian motion without drift (dimension
1),
g(x) = sin2(x),
f (z) = az2 with a = 5 or a = 6,
n from 10 to 50,
conditional expectation approximated by tree method or
quantification method.

We know the real solution.
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