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1. Introduction
The time may be discrete or continuous.

Homogenous in time strong Markov process (family) Z = (Zt)t≥0 in X
⋃
e,

(X,B) is a measurable space, e is an absorbing state. z ∈ X is initial point.

We assume that Z is defined on some filtered probabilistic space

ρ(z) ≥ 0 — killing intensity;

g(z) — payoff function, g(e) = 0; c(z) — cost of observations, c(e) = 0.

V (z, τ ) = Ez

g(Zτ )−
τ∫

0

c(Zs)ds

 , V (z) = sup
τ
V(z, τ ).

V (z, τ ) = Ẽz

g(Zτ )e
−

τ∫
0
ρ(Zu)du

ds−
τ∫

0

c(Zs)e
−

s∫
0
ρ(Zu)du

ds

 ,
In discrete time

∫ τ
0 −→

∑τ−1
0 , exp(−

∫ t
0 ρ(Zu)du) −→

∏t−1
u=0(1− ρ(Zu)).
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First papers in the beginning of 60-th (Dynkin, Shiryaev). Monographs by
Shiryaev (1968), (1978). Dynkin, Yushkevich (1967), (1975). A lot of papers
after that.

General theory: Peskir, Shiryaev (2006).

One-dimensional diffusion:

Salminen (1985) (Martin’s boundary),

Dayanik, Karatzas (2003) (reduction to the standard Brownian motion),

Bronstein, Hughston, Pistorius and Zervos (2006) (one-dimensional diffusion on
half-line with ρ(z) and piecewise-constant nondecreasing payoff function).

Peskir, Shiryaev (2006) (smooth fitting).

In discrete time for finite (in some cases countable) state space

Sonin (1999) (state elimination algorithm).

Irle (2006) (forward algorithm)

Guess or construct? Approximation from above and from below.
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C ∈ B — subset of X ,

τC = inf{t : t ≥ 0, Zt /∈ C}.

gC(z) = V (z, τC) = Ez

[
g(ZτC)−

τC∫
0
c(Zs)ds

]
, gC(z) = g(z) if z /∈ C.

Main Lemma. If gC(z) > g(z) for all z ∈ C, then the problem with the
payoff function gC(z) has the same value function as the problem with
the payoff function g(z).
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Proof. It follows from gC(z) > g(z) that VC(z) ≥ V (z).

From the other side for any τ we can consider τ ′ = inf{t : t ≥ τ, Zt /∈ C}.
Then

V (z, τ ′) = Ez

[
−

τ∫
0
c(Zs)ds + Ezτ

[
g(Zτ ′)−

τ ′∫
τ
c(Zs)ds

]]
=

= Ez

[
−

τ∫
0
c(Zs)ds + gC(zτ )

]
= VC(z, τ ).

Consequently V (z) ≥ VC(z).
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We say that a function f (z) is a modification of the payoff function g(z)
(or is a modified payoff function) if f (z) ≥ g(z) and
f (z) = gC(z) for C = {z : f (z) > g(z)}.
It follows from the Main Lemma that the optimal stopping problems with the
payoff function g(z) and the modified payoff function f (z) have the same value
function.

How to find such a set C which is a candidate for modification?
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2. Discrete time

Revaluation operator Tf (z) = −c(z) + Ezf (Z1).

Ṽ (0)(z) = g(z), Ṽ (k+1)(z) = max[g(z), T Ṽ (k)(z)]. Then Ṽ (k)(z)] ↑ V (z).

Even in a very simple cases Ṽ (k)(z) 6= V (z) for all k.

Sonin (1999) – state elimination algorithm for the case of the finite number of
states.

It has no sense to stop on the set {z : Tg(z) > g(z)}.
Sonin proposed to eliminate this set and to consider new Markov chain which co-
incides with the old one at the times when the old chain is in the complimentary
set.

If X consists of n states then sequentially applying this procedure we can find
the value function after not more than 2n− 2 steps.

What to do for arbitrary state space?

What to do in continuous time?
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The answer to the first question was given in

[1] Ernst Presman. A new approach to the solution of optimal stopping problem
in a discrete time. Stochastics: An International Journal of Probability and
Stochastic Processes, Special Issue: Optimal stopping with Applications, 83
(2011), n. 4-6, pp. 467 - 475.

Consider operator Lf (z) = Tf (z)− f (z)

Very important property:

Function gC(z) satisfies for z ∈ C the equation LgC(z) = 0.

a) If C = {z : Lg(z) > 0} is empty, then V (z) = g(z),

b) If C = {z : Lg(z) > 0} is not empty, then gC(z) is a modification of the
payoff function g(z).

Let g0(z) = g(z), C1 = {z : Lg(z) > 0},

Ck+1 = {z : TgCk(z)− g(z) > 0} = Ck
⋃
{z : LgCk(z) > 0}

and gk(z) = gCk(z), k ≥ 1. The respective sequence of the modified payoff
functions gk(z) is nondecreasing and converges to the value function.
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3.1. One-dimensional diffusion
[2] Ernst Presman. Solution of the optimal stopping problem of one-dimensional diffusion
based on a modification of payoff function. Prokhorov and Contemporary Probability Theory -
In Honor of Yuri V. Prokhorov, Springer Proceedings in Mathematics and Statistics, Springer
Verlag, 2013, v. 33, 347-380.

At first, Brownian motion on the interval [a, b] with ρ(z) = 0, c(z) = 0.

a) Absorbtion at a and b. b) Absorbtion at a and reflection at b.

c) Case a) and partial reflection at the finite set A0.

Pz[Zt > z]→ 1 + α(z)

2
as t→ 0,

where −1 < α(z) < 1, α(z) 6= 0 iff z 6= A0).

C =]c, d[ as a candidate for modification. g]c,d[(z).

Operators: Lf (z) := 1
2
d2

dz2f (z);

L1f (z) = (1 + α(z))f ′+(z)− (1− α(z))f ′−(z),

g]c,d[(z) satisfies on ]c, d[ the equalities: Lg]c,d[(z) = 0, L1g]c,d[(z) = 0.
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Let C be the set of functions f (z) satisfying the following properties.

1) f (z) is bounded; f ′′(z) exists and is finite and continuous on ]a, b[ with
exception of a finite (possibly empty) set A1; f (z) and f ′(z) have left and right
limits at points from A0⋃A1.

2) f (a) and f (b) are finite.

3) The set of points where Lf (z) > 0 is either empty or consists of a finite
number of intervals. Denote by A2 the set of the endpoints of these intervals.

Let A = A0⋃A1⋃A2 = {z1, . . . , z k}, where a = z 0 < z 1 < . . . < z k <
z k+1 = b.

In what follows we assume that either g(z) ∈ C or there exists a modification
of g(z) which belongs to C.
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Theorem 1. Let a) the function g(z) be continuous;

b) the set where Lg(z) > 0 be empty ;
c) L1g(z) ≤ 0 for all z ∈ A;
d1) if a is reflecting point then g′+(a) ≤ 0;
d2) if b is reflecting point then −g′−(b) ≤ 0.

Then V (z) = g(z).

At first we shall modify g(z) ∈ C in the neighborhood of points of discontinuity
in such a way that modified function will be continuous and in g(z) ∈ C.

After that on intervals where Lg(z) < 0.
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Generalized smooth fitting:

L1g(z) ≤ 0, Lg(z) ≤ 0 for z 6= zi, L1g(zi) > 0
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Figure 1:

”Diffusion does not like angles”.

Diffusion does not like convex angles (i.e. such angles that L1g(zi) > 0).

The reason is that in the neighborhood of such angle the payoff function may
be modified.
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Fig. 1. Payoff function.
Nonstandard points: points of discontinuities,

ends of intervals where Lg(z) > 0.
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Fig. 1.1 Modification near the points of discontinuities



15

Fig. 1.2 Modification on the interval where Lg(z) > 0,
Lg]z1,z2[(z) = 0 on ]z1, z2[.

Nonstandard points: z1, z2, z4, where L1g(z) > 0
If z3 = z̃ then for some α it is standard and for some – nonstandard.

The point z6 where L1g(z6) < 0 is standard.
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Fig. 1.3 Modification on [a, z2] at point z1 where L1g(z1) > 0.
Smooth fitting at the left point z7, Lg]z7,z2[(z) = 0 on ]z7, z2[.
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Fig. 1.4 Modification on [a, z3] at point z2 where L1g(z2) > 0.
Generalized smooth fitting at the left point z6,

Smooth fitting at the left point z8.
Lg]z6,z8[(z) = 0 on ]z6, z8[.
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Fig. 1.5 Modification on [a, z4] at point z3 where L1g(z3) > 0.
(Generalized) smooth fitting at the left point z9.
Lg]z9,z4[(z) = 0 on ]z9, z4[, L1g]z9,z4[(z3) = 0.

Different pictures for different α(z3).
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Fig. 1.6 Modification on [a, b] at point z4 where L1g(z4) > 0.
Generalized smooth fitting at the left point z6.

Smooth fitting at the right point z10.
Lg]z6,z10[(z) = 0 on ]z6, z10[, L1g]z6,z10[(z3) = 0.

Different pictures for different α(z3).
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Fig. 1.7 Modification at point b in case of reflection.
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3.2. One-dimensional diffusion

Homogeneous in time strong Markov process (family) Z = (Zt)t≥0 in X
⋃
e,

e is an absorbing state and X =]a, b[, −∞ ≤ a < b ≤ +∞.

σ(z) ≥ 0 – diffusion coeff., m(z) – drift coeff., ρ(z) ≥ 0 – killing intensity.

I) ∀z ∈]a, b[ ∃ε > 0 :

z+ε∫
z−ε

1 + |m(u)|
σ2(u)

du <∞, – i.e. diffusion is regular,

II) ∃ a finite (possibly empty) set A0 ⊂]a, b[ with a partial reflection, i. e.

Pz[Zt > z]→ 1 + α(z)

2
as t→ 0,

where −1 < α(z) < 1, α(z) 6= 0 for z ∈ A0, α(z) = 0 for z /∈ A0.

III) each point a and b is either natural (it can not be reached during the finite
time) or reflecting or adsorbing.
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Measurable function c(z) — cost of observation, c(e) = 0.

We define also the following two operators:

Lf (z) :=
σ2(z)

2

d2

dz2
f (z) + m(z)

d

dz
f (z)− ρ(z)f (z)− c(z),

L1f (z) := (1 + α(z))f ′+(z)− (1− α(z))f ′−(z),

α(z) was defined in II), f ′−(z) is the left, f ′+(z) is the right derivative of f (z).

Lg]c,d[(z) = 0 for z ∈]c, d[, z /∈ A0, L1g]c,d[(z) = 0 for z ∈]c, d[
⋂

A0,

(1)
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Algorithm for general diffusion and functions from C is absolutely the same as
for Brownian motion.

The difference is that the operator L is different.

Instead of

Lf (z) :=
1

2

d2

dz2
f (z)

we have

Lf (z) :=
σ2(z)

2

d2

dz2
f (z) + m(z)

d

dz
f (z)− ρ(z)f (z)− c(z).
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The algoriphm works universally:

for the case with and without discounting depending on the state of the process,

with and without the cost of observation depending on the state of the process.

The payoff function and its derivative may have a finite number of discontinu-
ities.

Diffusion may have finite number of points of partial reflection.

We do not need to ”guess” about the structure of the stopping set,

we do not need a verification theorem,

we do not need the Bellman equation.

We simply modify sequentially the payoff function and obtain as a result the
value function.
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4. One-dimensional diffusion and its maximum (family)

Markov process (family) Zt = (Yt, St) with initial point (y, s), where y ≤ s, Ys
is one-dimensional diffusion from the previous section, St = max[s, sup

0≤v≤t
Yv].

V (y, s, τ ) = Ey,s

g(Zτ )−
τ∫

0

c(Zs)ds

 , V (y, s) = sup
τ
V (y, s, τ ).

Peskir considered the case g(y, s) = s, c(y, s) = c(y). He ”guessed” that there
exists f (s) < s such that for given s it is optimal to stop for y ≤ f (s) and
to continue for y > f (s). He ”guessed” that on the line y = f (s) the value

function must be smooth. Using the necessary condition
d

ds
V (y, s)

∣∣∣∣
y=s

= 0 he

obtained the differential equation for f (s).
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Let ḡ(y, s) for fixed s be the value function (v.f.) for the optimal stopping
problem with an absorbtion at y = s and with the payoff function g(y, s).

ḡ(y, s) is a modification of g(y, s).

Let ĝ(y, s, a) for fixed s be v.f. for optimal stopping problem with an absorbtion
at y = s and with the payoff function ḡ(y, s) for y < s, ĝ(s, s, a) = a > s.

According to [2] ĝ(y, s, a) is obtained from ḡ(y, s) by generalized smooth fitting.

V (y, s) = ĝ(y, s, V (s)) where V (s) = V (s, s). So, the smooth fitting along
y is obtained not from intuition, but from modification. Using the necessary

condition
d

ds
ĝ(y, s, V (s))

∣∣∣∣
y=s

= 0 we obtain the differential equation for V (s).

Let Vs0(s) be the solution of this equation for s < s0 with initial condition
Vs0(s0) = ḡ(s0, s0). Then ĝ(y, s, Vs0(s) is the value function for the initial
problem with absorbtion at (s0, s0).

lim
s0→b

V (y, s) = ĝ(y, s, Vs0(s).
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Thank you for the attention


