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Introduction

Introductory remarks

Absence of arbitrage is one of the fundamental notions in
quantitative finance for pricing, hedging and also portfolio
optimization.

A basic step in the theoretical development (completed
mainly in work by Delbaen and Schachermayer, see also
Kabanov) was the equivalence of the economic notion of
NFLVR (no-free-lunch-with-vanishing-risk) and the
mathematical notion of ELMM equivalent local martingale
measure) (in the general case EσMM).

→ For an extension to the case with short sales
prohibitions see Pulido’13



Introduction

Introductory remarks

More recently, particularly in the (descriptive) Stochastic
Portfolio Theory (Fernholz, Karatzas) it was argued that
the behavior in real markets corresponds to weaker
notions of no-arbitrage than NFLVR.

In parallel, the Benchmark approach to quantitative finance
(Platen et al) aims at showing how pricing, hedging as well
as portfolio optimization can be performed also without
existence of an ELMM



Introduction

Introductory remarks

Various weaker notions of no-arbitrage have therefore been
introduced more recently and their consequences on pricing,
hedging and portfolio optimization have been studied (see a sur-
vey in Fontana’13).

While NFLVR is not robust with respect to changes in
numeraire and reference filtration, the weaker concepts
are.
We want to concentrate here on the weaker concepts of
NUPBR (no-unbounded-profit-with-bounded-risk)
(Karatzas-Kardaras’07) and the equivalent one of NA1
(no-arbitrage-of-the-first-kind) (Kardaras’12) that appear as
minimal conditions to meaningfully solve portfolio
optimization problems.



Introduction

Introductory remarks

Working under NA1 (NUPBR) one cannot anymore rely on
an ELMM nor on the corresponding density process
(R.-N.-derivative)

→ Beyond NFLVR all possible candidates for the
density process of an ELMM turn out to be strict
local martingales.



Introduction

Introductory remarks

A crucial concept, generalizing the density process, is that of
an ELMD (equivalent local martingale deflator) or, more gen-
erally, ESMD (equivalent supermartingale deflator): over a fi-
nite horizon [0,T ] the latter is a process Dt ≥ 0 with D0 = 1,
DT > 0, P− a.s. and such that Dt V̄t is a supermartingale for all
discounted admissible (non-negative) portfolio processes V̄t .

If ∃ an ESMM (equivalent supermartingale measure),
namely Q ∼ P for which all V̄t are supermartingales, then
Dt :=

(
dQ
dP

)
|Ft

is an ESMD, actually a martingale, but an

ESMD is not necessarily a density process.
Like the density process, an ESDM is itself a
supermartingale, but it may fail to be a martingale, even a
local martingale.



Introduction

Introductory remarks

The interest therefore arises in finding market models that
fall between NFLVR and NA1: they allow for classical
arbitrage, but make it still possible to perform pricing,
hedging and portfolio optimization.
For continuous market models a classical example is
related to Bessel processes: it appears already in
Delbaen-Schachermayer’95 and was further developed by
various authors (e.g. Platen, Ruf, Hulley,..)

There is therefore interest in finding other models, beyond
Bessel processes, that satisfy NA1 but not NFLVR and whether
there exists a systematic procedure to generate such models in
a more general semimartingale framework; equivalently, as we
shall see, to generate ESMDs that are strict supermartingales.

→ This is the aim of the first part below



Introduction

Introductory remarks

As mentioned in Christensen-Larsen’07 and Hulley-Platen’10,
there may not be many possibilities while remaining within
continuous market models (one basically remains within time
changed Bessel processes); more possibilities may arise in dis-
continuous market models and/or in models with portfolio con-
straints (beyond standard admissibility).

It was shown in Kardaras’09 that for exponential Levy
models the various notions of no-arbitrage, weaker than
NFLVR, are all equivalent. This leaves however open the
case of jump-diffusion models.



Introduction

Introductory remarks

On the other hand, portfolio constraints may lead to
particular situations that are worth exploring.
(Karatzas-Kardaras’07 consider the case of predictable
closed convex constraints).

We shall be interested in exploring the specific case of jump-
diffusion market models, possibly with portfolio constraints.



Introduction

OUTLINE OF THE REMAINING PART

A. (Based on Ruf-R.’13)

A systematic procedure to generate models that satisfy
NA1, but not NFLVR
An example relating to discontinuous market models



Introduction

OUTLINE OF THE REMAINING PART

B. (Based on Mancin-R.’13)

The jump-diffusion market model
The GOP (growth optimal portfolio) as a basic tool to
obtain an ESMD (given by the inverse of the discounted
GOP) and equivalence between: validity of NA1 and
existence of an ESMD
The ESMD given by the discounted inverse of the GOP as
the only candidate for the density process of an ESMM
The case of portfolio constraints where the inverse of the
discounted GOP is a strict supermartingale, not even a
local martingale.



A systematic approach

Market model

Given a finite time horizon T <∞, consider a market
((Ω,F , (Ft ),P),S) with (Ft ) right continuous and
S = (St ) = (S1

t , · · · ,Sd
t ) the already discounted prices of d

risky assets supposed to be general non-negative
semimartingales.
Given a self-financing, predictable strategy H = (Ht ), let

V x ,H = (V x ,H
t ) = x + (H · S)t = x +

∫ t

0
HudSu

be the value process corresponding to H with V x ,H
0 = x .

Definition(admissible strategy) An S−integrable, predictable H
is α–admissible if H0 = 0 and V 0,H

t ≥ −α, t ∈ [0,T ] a.s. H is
admissible if it is admissible for some α > 0.



A systematic approach

Market model

Definition(arbitrage strategy) An admissible H is an arbitrage
strategy if P(V 0,H

T ≥ 0) = 1 and P(V 0,H
T > 0) > 0. It is a strong

arbitrage if P(V 0,H
T > 0) = 1.

Definition(NA1) An FT−measurable random variable ξ is called
an Arbitrage of the First Kind if P(ξ ≥ 0) = 1, P(ξ > 0) > 0, and
for all x > 0 there exists an x−admissible strategy H such that
V x ,H

T ≥ ξ. We shall say that the market admits No Arbitrage of
the First Kind (NA1), if there is no arbitrage of the first kind in the
market.



A systematic approach

Market model

Definition(NUPBR) There is No Unbounded Profit With
Bounded Risk (NUPBR) if the set

K1 =
{

V 0,H
T | H = (Ht ) is a 1–admissible strategy for S

}
is bounded in L0, that is, if

lim
c↑∞

sup
W∈K1

P(W > c) = 0

(NA1) and (NUPBR) can be shown to be equivalent
(Kardaras’10)
(NFLVR) implies (NUPBR) but not viceversa.

Proposition 1. (Kardaras’12, Takaoka’13, see also Song’13) A
market satisfies NUPBR (NA1) if and only if there exists an
ESMD.



A systematic approach

Construction of strict local martingales

Based on Delbaen-Schachermayer’95 (Föllmer exit
measure) we start from a space (Ω,F ,Ft ,Q) where, under
Q, Si

t are local martingales (recall Si
t are discounted)

→ The market ((Ω,F ,Ft ,Q),S) satisfies NFLVR.

Consider then a non-negative Q−martingale Y = (Yt ) with
Y0 = 1 and stopped at 0. Let τ := inf{t ≥ 0 | Yt = 0} and
make the

Assumption 1.

Q(Y (T ) = 0) = Q(τ ≤ T ) > 0 and Q({Y (τ−) > 0}∩{τ ≤ T}) = 0.

→ Assumption 1 and the martingality of Y imply
Q{τ ≤ T} < 1.



A systematic approach

Construction of strict local martingales

Being Yt a Q−martingale, one may generate a probability
P via dP/dQ = YT

→ P is absolutely continuous w.r.to Q but not P ∼ Q.
→ P will correspond to the probability in the original

market

Lemma. (See e.g. Carr et al.’12) Under Assumption 1 the
process 1/Y is a nonnegative P−strict local martingale with
P(1/Y (T ) > 0) = 1. Furthermore, P{τ < T} = 0.



A systematic approach

Construction of strict local martingales

To proceed, introduce

Assumption 2. There exists x ∈ (0,1) and an admissible strat-
egy H = (Ht ) such that V x ,H

T ≥ 1{YT>0}.

→ The assumption is equivalent to stating that the
minimal superreplication price of 1{YT>0} is less
than 1.

Theorem. Under Assumptions 1 and 2 the market
((Ω,F ,Ft ,P),S) satisfies NA1 but not NFLVR. The H in As-
sumption 2 is a strong arbitrage in this market.



A systematic approach

Construction of strict local martingales

(Sketch of the proof:)
H from Assumption 2 is Q−admissible and thus also
P−admissible. Since P{1{YT>0} = 1} = P{τ ≥ T} = 1 and
x < 1, the strategy H is a strong arbitrage thus excluding
NFLVR.
1/Y is a P−local martingale and also Si/Y are. There
exists thus an ESMD and by Proposition 1 we have that
NA1 (NUPBR) holds.



A systematic approach

Construction of strict local martingales

This result leads to a systematic procedure since (see Delbaen-
Schachermayer’95, Ruf’13, Imkeller-Perkowski’13) basically
any market ((Ω,F , (Ft ),P),S) that satisfies NA1 but not NFLVR
implies the existence of a measure Q and of a Q−local martin-
gale Y that satisfies Assumption 1 and for which dP/dQ = YT .



A systematic approach

Example

1. (Adapted from Chau Ngoc Huy). Start from a Q−Poisson
process Nt with intensity λ > 1/T . Put Yt := Nt−λt +1, stopped
when it first hits zero (stopping time τ ) or when it first jumps
(random time ρ). Let S1 = Y and Si for i = 2, · · · ,d be arbitrary
Q−local martingales.

It can be seen that Q(YT = 0) = exp(−1) (argument based
on using the random times τ and ρ) and so Assumption 1
holds.
Furthermore, also Assumption 2 holds with
x = 1− exp(−1) and H = (H1

t , · · · ,Hd
t ) where

H1
t = exp(λt − 1)1{t≤ρ∧τ} and H i

t = 0, i = 2, · · · ,d .

→ Therefore the above Theorem holds implying that
NA1 holds but to NFLVR.



A systematic approach

Example

2. The previous example can be generalized by considering a
marked point process Nt with jump intensity λ > 1/T and an
arbitrary distribution F over the mark space [Fmin,Fmax] where
Fmin ≤ 1 ≤ Fmax and F has expectation 1.

→ Assumption 1 holds as before and a Assumption 2
holds with x = Fmax

Fmin

(
1− exp

(
− 1

Fmin

))
< 1 and

H1
t =

exp
(
− 1−λt

Fmax

)
Fmin

1{t≤ρ∧τ} and thus the above
Theorem holds here as well.



Jump-diffusion models

Jump-diffusion market model

On (Ω,F ,Ft ,P) let there be given d sources of
randomness
W = {Wt = (W 1

t , · · · ,W m
t )′} an m−dimensional standard

Wiener (m ≤ d)
N = {Nt = (N1

t , · · · ,N
d−m
t )′} a (d −m)-dimensional

Poisson counting process with Ft−intensity
λ = {(λ1

t , · · · , λ
(d−m)
t )′}

dMk
t :=

dNk
t −λ

k
t dt√

λk
t

the associated compensated martingale



Jump-diffusion models

Jump-diffusion market model

There are d + 1 securities:

{
dS0

t = S0
t rtdt , S0

0 = 1
dSj

t = Sj
t−

(
aj

tdt +
∑m

k=1 bj,k
t dW k

t +
∑d

k=m+1 bj,k
t dMk−m

t

)
, Sj

0 > 0

Assumption 1:

bj,k
t ≥ −

√
λk−m

t , ∀t ∈ [0,∞), j ≤ d , k ∈ {m + 1, · · · ,d}

bt = {bj,k
t } is invertible for a.e. t ∈ [0,T ]



Jump-diffusion models

Jump-diffusion market model

The generalized market price of risk is

θt = (θ1
t , · · · , θd

t )′ = b−1
t [at − rt1] implying

dSj
t = Sj

t−

(
rtdt +

m∑
k=1

bj,k
t (θk

t dt + dW k
t ) +

d∑
k=m+1

bj,k
t (θk

t dt + dMk−m
t )

)



Jump-diffusion models

Admissible strategies

Let δ = {δt = (δ0
t , δ

1
t , · · · , δd

t )′} be predictable with∫ T
0 δj

tdSj
t <∞ and define

(portfolio value corresponding to δ)

Ss,δ
t =

d∑
j=0

δj
tS

j
t with Ss,δ

0 = s > 0

δ is admissible if Ss,δ
t ≥ 0 ∀t ∈ [0,∞) and

dSs,δ
t =

∑d
j=0 δ

j
tdSj

t (self-financing)

The discounted portfolio process is S̄s,δ
t :=

Ss,δ
t

S0
t



Jump-diffusion models

Admissible strategies

The strategy expressed in terms of fractions of invested

wealth is πj
δ,t = δj

t
Sj

t−
Ss,δ

t−
implying

dSs,δ
t = Ss,δ

t−

{
rtdt +

∑m
k=1

(∑d
j=1 π

j
δ,tb

j,k
t

) (
θk

t dt + dW k
t
)

+
∑d

k=m+1

(∑d
j=1 π

j
δ,t−bj,k

t

)(
θk

t dt + dMk−m
t

)}

Defining Sδ
t := S1,δ

t , one has Ss,δ
t = sS1,δ

t



Jump-diffusion models

Growth optimal portfolio

Definition: For an admissible δ, the growth rate gδ = (gδt ) is
the drift in the SDE of log Sδ = (log Sδ

t ). A strategy δ∗ (and the
corresponding Sδ∗) is said to be growth optimal if gδ

∗ ≥ gδ for all
admissible δ.

For a generic admissible δ one has

gδt = rt +
∑m

k=1

[∑d
j=1 π

j
δ,tb

j,k
t θk

t −
1
2

(∑d
j=1 π

j
δ,tb

j,k
t

)2
]

+
∑d

k=m+1

∑d
j=1 π

j
δ,t b

j,k
t

(
θk

t −
√
λk−m

t

)
+log

1+
∑d

j=1 π
j
δ,t

bj,k
t√
λk−m

t

λk−m
t


→ Assumption 1 guarantees that(

1 +
∑d

j=1 π
j
δ,t

bj,k
t√
λk−m

t

)
> 0



Jump-diffusion models

Growth optimal portfolio

To maximize gδ, maximize individually the two sums
thereby putting

ck
t :=

d∑
j=1

πj
δ,tb

j,k
t

and making

Assumption 2:
√
λk−m

t > θk
t , ∀t ∈ [0,∞), k ∈ {m + 1, · · · ,d}



Jump-diffusion models

Growth optimal portfolio

The maximizing values c∗kt are

c∗kt =


θk

t for k ∈ {1,2, · · · ,m}

θk
t

1−θk
t (λk−m

t )
− 1

2
for k ∈ {m + 1, · · · ,d}

It follows that πδ∗,t = (π1
δ∗,t , · · · , π

d
δ∗,t ) = (c∗t )′b−1

t and

dSδ∗
t = Sδ∗

t−

(
rtdt +

∑m
k=1 θ

k
t (θk

t dt + dW k
t )

+
∑d

k=m+1
θk

t

1−θk
t (λk−m

t )
− 1

2
(θk

t dt + dMk−m
t )

)



Jump-diffusion models

Basic results (analogous to continuous models)

Proposition 2: Under the given assumptions and without re-
strictions on the portfolio one has that

Ẑt :=
1

S̄δ∗
t

is a supermartingale deflator.

In fact, by application of Ito’s formula one has that

d
(

S̄δt
S̄δ∗t

)
=
∑m

k=1

(∑d
j=1 δ

j
t Ŝ

j
tb

j,k
t − Ŝδ

t θ
k
t

)
dW k

t

+
∑d

k=m+1

((∑d
j=1 δ

j
t Ŝ

j
t−bj,k

t

)(
1− θk

t√
λk−m

t

)
− Ŝδ

t−θ
k
t

)
dMk−m

t



Jump-diffusion models

Basic results

Proposition 3: There is equivalence between
i) Existence of an ESMD
ii) Validity of NA1 (NUPBR)

This statement is shown in Karatzas-Kardaras’07 also in
presence of predictable closed convex constraints (see
also Takaoka’13, Song’13 in a general setting but without
portfolio constraints)



Jump-diffusion models

Basic results

Proposition 4: Under Assumptions 1 and 2, and without portfo-
lio restrictions, the process Ẑt is the only candidate for the den-
sity process of an ESMM.

Particularizing the expression for d
(

S̄δt
S̄δ∗t

)
to the case of

δ = (1,0, · · · ,0) one obtains

d

(
1

S̄δ∗
t

)
= − 1

S̄δ∗
t

m∑
k=1

θk
t dW k

t −
1

S̄δ∗
t−

d∑
k=m+1

θk
t dMk−m

t

We shall next show that, under Assumption 2,

dLt = −Lt−

(
m∑

k=1

θk
t dW k

t +
d∑

k=m+1

θk
t dMk−m

t

)



Jump-diffusion models

Density process

The general formula for the R.-N.-derivative Lt :=
(

dQ
dP

)
|Ft

of an absolutely continuous measure transformation in the
jump-diffusion case is

Lt = exp
{
−1

2
∑m

k=1
∫ t

0

(
θk

s
)2 ds −

∑m
k=1

∫ t
0 θ

k
s dW k

s

}
∏d

k=m+1

{
exp

[∫ t
0 θ

k
t

√
λk−m

s ds
]∏Nk−m

t
n=1

(
1− θk

Tn√
λk−m

Tn

)}

→ Assumption 2 guarantees that

(
1− θk

Tn√
λk−m

Tn

)
> 0.

Therefore, if Assumption 2 does not hold, there
cannot exist an ESMM.



Jump-diffusion models

Density process

Imposing that Q be an ESMM one obtains ϕk
t = −θk

t for k ∈ {1,2, . . . ,m}
ψk−m

t = 1− θk
t√
λk−m

t

for k ∈ {m + 1, . . . ,d}.

and with it the required dynamics for Lt .



Jump-diffusion models

Summing up (unconstrained case)

Under Assumptions 1 and 2 we have obtained the following:
The density process of an ESMM is an ESMD;
Ẑt exists and is the only ESMD;
Ẑt is the only candidate for the density process of an
ESMM.

→ If Ẑt is a strict supermartingale, then there does
not exist an ESMM and thus also no NFLVR.
However, since Ẑt is an ESMD, the properties NA1
(NUPBR) still hold.

Furthermore, whenever Assumption 2 does not hold then,
independently of the presence of portfolio restrictions,
there does not exists an ESMM and so we do not have
NFLVR.



Jump-diffusion models

Constraints on the portfolio

For simplicity we consider the case of d = 2
(πt = (π0

t , π
1
t , π

2
t )′) and discuss two possible situations A.

and B.

Case A. Assumption 2 is not required to be verified, but we re-
quire the condition

(R) π1
t b1,2

t + π2
t b2,2

t ≤ C for some real C > 0



Jump-diffusion models

Constraints on the portfolio

Under absence of Assumption 2 the existence of the GOP
is not guaranteed without restrictions on the portfolio
strategy. In fact, the growth rate would go to infinity for
πi

tb
1,2
t → ∞.

→ On the other hand, restriction (R) guarantees the
existence of the GOP.

With restriction (R) we have in fact

c̃k
t =

{
θ1

t for k = 1
C for k = 2.

and

dS̄δ∗
t = S̄δ∗

t−

{
θ1

t

(
θ1

t dt + dWt

)
+ C

(
θ2

t dt + dMt

)}



Jump-diffusion models

Constraints on the portfolio

Proposition 5: Under Assumption 1 and restriction (R) the pro-
cess Ẑt := (S̄δ∗

t )−1 as well as the processes S̄δ
t (S̄δ∗

t )−1, for ad-
missible δ, are supermartingales that are not local martingales.

Show only the case of Ẑt . We have

dẐt = −Ẑt

(
C
(
θ2

t −
√
λt
)

+ Cλt√
λt +C

)
dt

− 1
S̄δ∗t−

(
θ1

t dWt + C
√
λt√

λt +C dMt

)
that has a strictly negative drift if, violating Assumption 2, we
have θ2

t >
√
λt .

→ Ẑt is a supermartingale deflator and so NA1
(NUPBR) holds. On the other hand, without
Assumption 2, we have already seen that NFLVR
does not hold.



Jump-diffusion models

Constraints on the portfolio

Case B. Assumptions 1 and 2 both hold as well as restriction
(R).

Proposition 6: Under Assumptions 1 and 2 and restriction (R),
if C <

θ2
t

1−
θ2

t√
λt

, then the same conclusions as in Proposition 5

hold.

Again we show only the case of Ẑt : here the drift in dẐt is

−Ẑt

(
C
(
θ2

t −
√
λt
)

+ Cλt√
λt +C

)
= Ẑt

(
C(C(θ2

t −
√
λt)+θ2

t
√
λt)√

λt +C

)
and it is strictly negative since C > 0 and C <

θ2
t

1−
θ2

t√
λt

.



Jump-diffusion models

Constraints on the portfolio

Also in the present case B., Ẑt is a supermartingale
deflator and so NA1 (NUPBR) hold.

With Assumption 2 in force, Ẑt is the only candidate to be
the density process of an ELMM. However, being Ẑt a strict
supermartingale, it cannot be a density process and so
NFLVR does not hold.



Thank you for your attention


	Introduction
	A systematic approach
	Jump-diffusion models

