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The subject of our talk concerns the theme of the enlargement of
filtrations. By definition, an enlargement of filtration is a problem
of measurability. But, thanks to the genius of the pioneers, this
theory has become a theory of computation, more structural and
more operational. This sometimes makes us lose the attention on
the issue of measurability.



Summary

Let F be a filtration and τ be a random time. Let G = (Gt)t≥0 be
the progressive enlargement of F with τ defined by

Gt = N σ(τ)∨F∞ ∨ (∩s>t(Fs ∨ σ(τ ∧ s))), t ≥ 0.

This family G is a right-continuous filtration.

We study the optional splitting formula in G. We are interested in
this formula because of

1. its fundamental role in many recent papers on credit risk
modeling,

2. its validity is limited in scope,

3. this limitation is not sufficiently underlined,

4. it is associated with some interesting measurability properties.
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Some examples of the measurability problem

The word ”measurability” denotes a relation a random map has
with respect to a σ-algebra.

We begin with Barlow’s paper, which is one of the first work on
enlargement of filtration theory. A honest time τ is considered in
this paper. It is shown that the G-progressively measurable
processes can be written in term of the random intervals
[0, τ), [τ,∞) and of the F-progressively measurable processes.



Some examples of the measurability problem

Similarly, for the G-predictable processes, they satisfy the formula :

For any Y ∈ P(G), there exist Y ′,Y ′′ ∈ P(F) such that

Y 11(0,∞) = Y ′11(0,τ ] + Y ′′11(τ,∞). (1)

This relationships is one of the elements which imply that every
F-martingale is a G-semimartingale in the case of a honest time τ .



Some examples of the measurability problem

If τ is not a honest time, we have a less precise formula proved in
Jeulin’s book: for any Y ∈ P(G), there exist a F-predictable
process Y ′ and a function Y ′′ defined on [0,∞]× (R+ × Ω) being
B[0,∞]⊗ P(F) measurable, such that

Y = Y ′11[0,τ ] + Y ′′(τ)11(τ,∞). (2)

In particular, [0, τ ] ∩ P(G) = [0, τ ] ∩ P(F). This formula is used in
various computations in the filtration G which vary from the
predictable dual projections to the orthogonal decomposition of the
family of G-martingales stopped at τ .



Some examples of the measurability problem

In the paper of Kusuoka, the martingale representation property in
G is studied for a Brownian filtration F and a random time τ
satisfying the two conditions:

(i) any F-martingale is a G-martingale (called hypothesis(H)),
and

(ii) the σ-algebras G◦t = σ(τ ∧ t) ∨ Ft , t ≥ 0, completed by the
null sets, form a right-continuous filtration.

The condition (ii) is a measurability condition and it is not trivial.
We remark already that {τ = t} /∈ G◦t , but always {τ = t} ∈ G◦t+.



Some examples of the measurability problem

The paper of Bélanger-Shreve-Wong considers another filtration
G?t = σ({τ ≤ s}: 0 ≤ s ≤ t) ∨ Ft , t ≥ 0. The filtration F is
supposed to be a complete Brownian filtration and the random
time τ to be a Cox time, i.e.

τ = inf{t ≥ 0: Γt ≥ Ξ},

where Γ is a F-adapted càdlàg increasing process and Ξ is a strictly
positive random variable independent of F∞. Then, it is proved
that (G?t )t≥0 is a right-continuous filtration, and consequently
Gt = G?t .



Some examples of the measurability problem

Bélanger-Shreve-Wong’s result is a typical example of the problem
studied in Weizsacker: in what circumstances does the following
formula hold:

T ′ ∨ (∩∞n=1Tn) = ∩∞n=1(T ′ ∨ Tn),

where T ′ is a σ-algebra and (Tn)n≥1 is an inverse filtration. This
interchangeability problem is in general a very delicate issue. See
for example the comments of Handel to have some idea about that.



Some examples of the measurability problem

This result of Bélanger-Shreve-Wong also is a particular case of the
following question: how can the σ-algebra GT , where T is a
F-stopping time, be factorized in terms of σ({τ ≤ s ∧ T: s ≥ 0})
and of FT .

Many works on G depends on that decomposition, especially when
the monotone class theorem is applied on GT . For example, we
have the identity G∞ = σ(τ) ∨ F∞ (completed by the null sets).
This is required in the paper of Kusuoka in order to obtain results
on the martingale representation property in G under the
hypothesis(H).



Some examples of the measurability problem

When the results of Kusuoka are extended in Jeanblanc-Song, one
has to work with a general F-stopping time T other than the ∞.
But usually the σ-algebra GT is strictly greater than
σ({τ ≤ s ∧ T: s ≥ 0}) ∨ FT . A laborious computation was
necessary in Jeanblanc-Song to get around the gap between them.

To better appreciate this idea, it is to be compared with the
general equality GT− = σ(τ ∧ T ) ∨ FT− (completed with null
sets), a consequence of formula (2) and of the identity
{T ≤ τ} = {T = τ ∧ T}.



Some examples of the measurability problem

In other respects, the work of Biagini-Cretarola requires the
following fact: for a complete Brownian filtration F, for a random
time τ whose hazard process is continuous and increasing, for any
G-martingale X , there exists a F-predictable process J such that
Xτ = Jτ on {τ <∞}. This is equivalent to say
{τ <∞} ∩ Gτ = {τ <∞} ∩ Gτ−.

In general these two σ-algebras are different. The gap between
such σ-algebras was the subject of several papers in the literature.
Biagini-Cretarola’s result was obtained by a direct computation. It
is useful to see if the result is consequence of some more general
principle.



Optional splitting formula for one random time

Recently an optional version of formula (2) has been revealed to be
fundamental in credit risk modeling with progressive enlargement
of filtration: for any G-optional process Y , there exist a F-optional
process Y ′ and a function Y ′′ defined on [0,∞]× (R+ × Ω) being
B[0,∞]⊗O(F) measurable, such that

Y = Y ′11[0,τ) + Y ′′(τ)11[τ,∞). (3)

We will call that formula optional splitting formula (in comparison
with the predictable splitting formula (2)). The term ”splitting” is
twofold. It obviously means that the formula is splitted at the
random time τ . But, more importantly, it underlines that the
measurability of Y ′′(τ) is factorized into two components σ(τ) and
O(F) (Y ′′ ∈ B[0,∞]⊗O(F)).



Optional splitting formula for one random time

This formula (3) has been directly or indirectly involved in
numerous works. That said, this widespread use of the formula
suggests caution. In fact, unlike formula (2), formula (3) is in
general not valid. We recall the well-known example of Barlow: let
F be the natural filtration of a Brownian motion B with B0 = 0.
Let T = inf{t ≥ 0: |Bt | = 1} and τ = sup{s ≤ T: Bs = 0}. Then,
X = 11[τ,∞)sign(BT ) is a G-martingale. If this process X satisfied
the optional splitting formula, the process Y ′′ could be chosen
F-predictable. Consequently ∆τX ∈ Gτ− which contradicts the
martingale property of X .

See also Jeulin’s book who extends this example to a general
theorem.



Optional splitting formula for one random time

Knowing that counter-example, we wondered if the use of the
optional splitting formula in the literature was justified. To have an
answer, we had followed the usual stages : We looked first the
consequences of such a formula. We then tried to find the
sufficient conditions. Moreover, since many works in the literature
used a multi-times version of the optional splitting formula, we had
included the multi-times version in our study. With these results we
had investigated the validity of the use of the optional splitting
formula.



Some immediate consequences
consequence on Gτ

We begin the investigation with a single random time τ .
For any random time R on Ω, we denote

FR = σ{XR11{R<∞}: X an F-optional process},
FR+ = σ{XR11{R<∞}: X an F-progressively measurable process}.

Theorem. Assume the optional splitting formula at τ . We
necessarily have Fτ = Fτ+ = Gτ .



Some immediate consequences
consequence on Gτ

The above equality of σ-algebras is not valid in general. Azéma-Yor
give a systematical construction of τ which does not satisfy the
above equality (see Jeulin): Let M be a continuous uniformly
integrable F-martingale such that M0 = 0,M∞ 6= 0. Let
τ = sup{t ≥ 0: Mt = 0}. Then, Fτ 6= Fτ+.

It is a generalization of Barlow’s example. Once again it proves
that the optional splitting formula at τ can not hold in general.



Some immediate consequences
the factorizability of Gt

For two elements a, b in [0,∞] we denote

a - b =


a if a ≤ b

∞ if a > b.

Theorem. If the optional splitting formula holds at τ , then for any
t ≥ 0, Gt = N ∨ σ(τ - t) ∨ Ft .

As a consequence of this theorem, the filtration
(N ∨ σ(τ - t) ∨ Ft: t ≥ 0) is right-continuous.



Some immediate consequences
the factorizability of Gt

As a matter of fact, in the above theorem we can not replace the
term τ - t with τ ∧ t. In general,

{t < τ}∩(σ(τ ∧t)∨Ft)+{τ ≤ t}∩(σ(τ ∧t)∨Ft) 6= σ(τ ∧t)∨Ft ,

because {τ ≤ t} (or more precisely {τ = t}) is not necessarily in
σ(τ ∧ t) ∨ Ft . We can laugh at this detail. Nevertheless, it is a
fault. See [Dellacherie-Meyer Chapitre IV, paragraph 104] which
comments on an example in Dellacherie. Also it is better to notice
that the problem has been overlooked in many papers in the
literature. (The problem no longer arises if {τ = t} is negligible
and if F is complete.)



Some immediate consequences
the factorizability of Gt

Theorem. The G-predictable processes satisfy the optional
splitting formula.



Optional splitting formulas which hold partially

We notice that the the optional splitting formula problem can not
be treated by itself. It should be considered as a particular case of
a more broad problem. We consider the family Lo of G-optional
subsets A ⊂ R+ × Ω such that, for any G-optional process Y ,
there exists a F-optional process Y ′ and a function Y ′′ defined on
[0,∞]× (R+ × Ω) being B[0,∞]⊗O(F) measurable, such that

Y 11A = (Y ′11[0,τ) + Y ′′(τ)11[τ,∞))11A. (4)

We say then that the optional splitting formula at τ holds on A.



Optional splitting formulas which hold partially

Formula (3) is the particular case of formula (4) when
A = R+ × Ω. To make the difference, we call formula (3) the
global optional splitting formula. The question now becomes
whether R+ × Ω ∈ Lo , or more generally, exactly which elements
are contained in the family Lo .

We note that, no matter if formula (3) holds, the family Lo always
gives good indications of what the filtration G looks like.



Optional splitting formulas which hold partially
the predictable elements in Lo

Theorem. Let A be a G-predictable set. Then, A ∈ Lo if and only
if, for any G-optional process Y , Y 11A satisfies the global optional
splitting formula.
Let (Ai )

∞
i=1 be a sequence of G-predictable sets. Suppose that

(Ai )
∞
i=1 ⊂ Lo . Then, ∪∞i=1Ai ∈ Lo .



Optional splitting formulas which hold partially
the intervals elements in Lo

We will especially interested in the intervals elements in Lo ,
because of the sufficient condition we will give later.

Proposition. Let S ,T be two G-stopping times. To have the local
optional splitting formula on [S ,T ), it is necessary and sufficient
that, for any bounded (Q,G)-martingale X such that XT ∈ GT−,
X satisfies the optional splitting formula on [S ,T ).



Optional splitting formulas which hold partially
the intervals elements in Lo

Proposition. Let R be a G-stopping time. Then, [R] ∈ Lo , if and
only if

{R <∞} ∩ GR = {R <∞} ∩ (N ∨ σ(τ - R) ∨ FR).



Optional splitting formulas which hold partially
the intervals elements in Lo

Proposition. Let S ,T be G-stopping times. Suppose that
(S ,T ) ∈ Lo and [T{S<T<∞}] ∈ Lo . Suppose that 11[T{S<T<∞}]

satisfies the optional splitting formula on (S ,T ]. Then,
(S ,T ] ∈ Lo .



Sufficient conditions for the optional splitting formula
the interval [0, τ)

As expected, we have the following result.
Theorem. [0, τ) ∈ Lo .

The proof of this result is easy. Let ξ ∈ G∞ be a bounded random
variable. Let us abuse the notation ξ to also denote the bounded
martingale EQ[ξ|Gt ], t ≥ 0. We write the identity:

ξt11{t<τ} = 11{t<τ}
Q[ξ11{t<τ}|Ft ]

Q[t < τ |Ft ]
11{Q[t<τ |Ft ]>0}, t ≥ 0.

This is an optional splitting formula for ξ on [0, τ). Now, we apply
the propositions on intervals elements to conclude.



Sufficient conditions for the optional splitting formula
sH-measure

As usual, there exists no complete solution for the situation of the
interval [τ,∞). The following notion induces a sufficient condition
which will be stroug enough to meet the pratical purposes.

Notion. Let S ,T be G-stopping times. A probability measure Q′
defined on G∞ is called an sH-measure over the random time
interval (S ,T ] (with respect to (Q,F,G)), if Q′ is equivalent to Q
on G∞, and if, for any (Q,F) local martingale X , X (S,T ] is a

(Q′,G) local martingale, where X
(S,T ]
t = X S∨T

t − X S
t , t ≥ 0.



Sufficient conditions for the optional splitting formula
sH-measure

Proposition. For any F-stopping time T , for any G-stopping time
S such that S ≥ τ (an almost sure relation), if an sH-measure Q′
over (S ,T ] exists, then [S ,T ) ∈ Lo .

Proposition. Let R be a G-stopping time. For any F-stopping
time T and any G-stopping time S , if an sH-measure Q′ over
(S ,T ] exists, we have

{τ ≤ R}∩{S ≤ R < T}∩GR = {τ ≤ R}∩{S ≤ R < T}∩(N∨σ(τ)∨FR).



Sufficient conditions for the optional splitting formula
sH-measure

Theorem. Suppose that there exists a countable family of pairs of
G stopping times {Sj ,Tj}, j ∈ N, such that

(1) Tj are F-stopping times ;

(2) (τ,∞) ⊂ ∪i∈N(Sj ,Tj) (covering condition on (τ,∞)).

Suppose that, for any j ∈ N, there exists an sH-measure Qj over
the time interval (Sj ,Tj ]. Then (τ,∞) ∈ Lo .
If we replace the condition (2) with the condition:

(2)’ [τ,∞) ∩ (0,∞) ⊂ ∪i∈N(Sj ,Tj) (the covering condition on
[τ,∞)).

Then, the global optional splitting formula holds.



Examples
Hypothesis(H)

Despite its unusual definition, the sH-measure condition is satisfied
in most of examples we know in the literature. We begin with the
following result.

We say that hypothesis(H) is satisfied between the pair of
filtrations (F,G) under Q, if every (Q,F)-martingale is a
(Q,G)-martingale. The hypothesis(H) is satisfied if τ is
independent of F∞ or if τ is a Cox time.
Theorem. If there exists a probability measure Q′ equivalent to Q
such that hypothesis(H) is satisfied under Q′, then the probability
measure Q′ is an sH-measure over (0,∞]. Consequently, the global
optional splitting formula holds.



Examples
Bélanger-Shreve-Wong’s result

The work of Bélanger-Shreve-Wong raises the problem of
establishing the right-continuity of the filtration of σ(τ - t) ∨ Ft

(completed by the null sets), t ≥ 0, when τ is a Cox time. We
know that a Cox time satisfies hypothesis(H). According to the
above theorem of hypothesis(H), the global optional splitting
formula holds. Applying the theorem of factorizability we obtain
Gt = N ∨ σ(τ - t)∨Ft , t ≥ 0. The result of Bélanger-Shreve-Wong
is proved, because G is a right-continuous filtration.



Examples
a paper of Biagini-Cretarola

The question raised in Biagini-Cretarola is to find, for any
G-martingale Z , a F-predictable process Ẑ such that Zτ = Ẑτ if
τ <∞. This is equivalent to saying that
{τ <∞} ∩ Gτ = {τ <∞} ∩ Gτ−. Parallel to the result of
Biagini-Cretarola, this question can also be treated with the
optional splitting formula. Indeed, if we suppose that τ is a Cox
time. Then the global optional splitting formula holds, which
implies that [τ ] ∈ Lo , according to the theorem of [R],

{τ <∞} ∩ Gτ = {τ <∞} ∩ (N ∨ σ(τ) ∨ Fτ ).

If F is moreover a Brownian filtration,

N ∨ σ(τ) ∨ Fτ = N ∨ σ(τ) ∨ Fτ− = Gτ−,

which yields the desired equality.



Examples
a Kusuoka’s paper

In Kusuoka the author works with a random time τ whose
probability distribution is continuous and which satisfies
Hypothesis(H). It is also assumed that the filtration
σ(τ ∧ t) ∨ Ft , t ≥ 0, is right-continuous. Let us show that there is
no need to assume this right-continuity, because it is the
consequence of the other assumptions. Actually, since τ has a
continuous distribution,

N ∨ σ(τ ∧ t) ∨ Ft = N ∨ σ(τ - t) ∨ Ft

Now applying the theorem of factorizability (passing through the
theorem of Hypothesis(H)), N ∨ σ(τ - t) ∨ Ft coincides with Gt ,
which is right-continuous.



Examples
Honest time model

A random time is called honest if it is equal to the end of an
optional set, when it is finite. The honest time is a good notion to
modelize the bankrupt. According to Barlow and Jeulin, in general
the model with a honest time does not satisfy the optional splitting
formula. The problem mainly comes from the difference between
Gτ− and Gτ . Jeulin gives some technique to determine if the
difference exists. In the paper of Barlow-Emery-Knight-Song-Yor, it
is proved that, when F is a Brownian motion filtration, this
difference is at most of one bit. In general, we do not know how to
determine this difference. That said, using the theorem of
sH-measure with covering condition, it can be proved that
(τ,∞) ∈ Lo for a honest time τ in a Brownian filtration.



Examples
\-model

We present an example, developped in Jeanblanc-Song that we
called the (\)-model, where the theorem of hypothesis(H) can not
be applied, but the optional splitting formula holds.

We consider an F-adapted continuous increasing process Λ and a
positive F-local martingale N. We suppose that Λ0 = 0,N0 = 1
and 0 ≤ Nte

−Λt ≤ 1 for all 0 ≤ t <∞.



Examples
\-model

Theorem. Suppose Hy(C), i.e. all (Q,F) local martingales are
continuous. Suppose 0 < Zt < 1 for any 0 < t <∞, where
Z = Ne−Λ. Then, for any (Q,F) local martingale Y , for any
bounded differentiable function f with bounded continuous
derivative and f (0) = 0, there exists a probability measure Q\ and
a random time τ (defined on an extension of the basic probability
space) such that, for any u ∈ R∗+, the martingale
Mu

t = Q\[τ ≤ u|Ft ], t ≥ u, satisfies the following evolution
equation(\):

(\u)

{
dXt = Xt

(
− e−Λt

1−Zt
dNt + f (Xt − (1− Zt))dYt

)
, u ≤ t <∞

Xu = 1− Zu.



Examples
\-model

Under the additional assumption:
Hy(Mc): For each 0 < t <∞, the map u → Mu

t is continuous on
(0, t],
it is also proved

Theorem. For any (Q\,F) local martingale X , the process

Γ(X )t =
∫ t

0 11{s≤τ}
e−Λs

Zs
d〈N,X 〉s −

∫ t
0 11{τ<s}

e−Λs

1−Zs
d〈N,X 〉s

+
∫ t

0 11{τ<s}(f (Mτ
s − (1− Zs)) + Mτ

s f ′(Mτ
s − (1− Zs)))d〈Y ,X 〉s ,

(5)
0 ≤ t <∞, is a well-defined G-predictable process with finite
variation, and the difference X̃ = X − Γ(X ) defines a (Q\,G) local
martingale.



Examples
\-model

We can check that the theorem of sH-measure with covering
condition is applicable in this (\)-model. Actually let

γs =
e−Λs

Zs
, αs = − e−Λs

1− Zs
, βs = f (Mτ

s −(1−Zs))+Mτ
s f ′(Mτ

s −(1−Zs)).

For 0 < a <∞, n ∈ N∗, let

Ta,n = inf{v ≥ a:
∫ v
a (γw )2d〈N〉w > n, or

∫ v
a (αw )2d〈N〉w > n,

or 〈Y 〉v − 〈Y 〉a > n, or v > a + n }.

and the exponential martingale:

ηa,n = E
(

(−γ11[0,τ ] − α11(τ,∞))11(a,Tn] � Ñ + (−β)11(τ,∞)11(a,Tn] � Ỹ
)
.



Examples
\-model

We have that Q\[ηa,n] = 1 and the probability measure ηa,n ·Q\ is
an sH-measure on (a,Ta,n]. This can be verified by a direct
computation using the above enlargement of filtration formula and
Girsanov’s theorem (the continuity of the martingales makes this
computation straightforward).

Consider the intervals (a,Ta,n). Since 0 < Z < 1 on (0,∞) and
since N,Y are continuous, limn→∞ Ta,n =∞. We have
(0,∞) = ∪a∈Q,n∈N∗(a,Ta,n). The sH-measure condition covering
[τ,∞) is satisfied. Consequently, the global optional splitting
formula at the random time τ holds in this (\)-model.



Multiple random times with marks

We now tackle the problem in its general form with multiple
random times τ1, . . . , τk with respectively marks (ξ1, . . . , ξk). It is
to note that, once the case of a single random time is well
understood, the case of multiple random times can naturally be
dealt with by induction. However, the multiplicity of random times
may cause an inflation of notations in an induction argument. That
is the true problem.



Multiple random times with marks

Let m > 0 be an integer and τ1, . . . , τm be m random times. Let
(E , E) be a separable complete metric space with its Borel
σ-algebra. Let M∈ E and E ◦ = E \ {M}. Let (ξ1, . . . , ξm) be m
random variables taking values in E ◦. Define, for 1 ≤ i ≤ m,

Hi (t) =


M if t < τi ,

ξi if τi ≤ t,
t ≥ 0,

and Hi (t) = σ(Hi (u): 0 ≤ u ≤ t). Let Hi (t) = NHi (∞) ∨Hi (t)
and Hi = (Hi (t))t≥0.



Multiple random times with marks

Let H{1,...,m}t = σ(Hi (s): 1 ≤ i ≤ m, 0 ≤ s ≤ t) and

G∗mt = N ∗m ∨ ∩s>t(Fs ∨H{1,...,m}s ),

where N ∗m denotes NH
{1,...,m}
∞ ∨F∞ . Let G∗m be the filtration of

G∗mt , t ≥ 0.
Let D(E ) be the space of all càdlàg functions taking values in E
equipped with the Skorokhod topology and its Borel σ-algebra D.



Multiple random times with marks

Notion. We say that the G∗m-optional splitting formula holds at
times τ1, . . . , τm with respect to F, if, for any G∗m-optional process
Y , there exist functions Y (0),Y (1), . . . ,Y (m) defined on
D(E )m × (R+ × Ω) being Dm ⊗O(F)-measurable such that

Y =
m∑
i=0

Y (i)(H
σm,i
1 , . . . ,H

σm,i
m )11[σm,i ,σm,i+1),

where H
σm,i
i denotes the process Hi stopped at σm,i and

(σm,1, . . . , σm,m) denotes the increasing re-ordering of (τ1, . . . , τm).



Multiple random times with marks
Mathematic induction

Theorem. Suppose m > 1. Supose that G∗m−1-optional splitting
formula holds at times τ1, . . . , τm−1 with respect to F. Suppose
G∗m-optional splitting formula holds at time τm with respect to
G∗m−1. Then, G∗m-optional splitting formula holds at times
τ1, . . . , τm with respect to F.



Multiple random times with marks
Mathematic induction

Notion. We say that ((ξ1, τ1), . . . , (ξm, τm)) satisfies the (strictly)
positive (conditional) density hypothesis with respect to F∞, if
there exists a Borel probability measure ν on E × [0,∞] and a
stictly positive function γ∗ on (E × [0,∞])m × Ω being
(E ⊗ B[0,∞])m ⊗F∞ measurable such that

Q[((ξ1, τ1), . . . , (ξm, τm)) ∈ A |F∞] =

∫
A

γ∗((x1, t1), . . . , (xm, tm))ν⊗m(d(x1, t1), . . . , d(xm, tm))

for any A ∈ (E × B[0,∞])m.



Multiple random times with marks
Mathematic induction

Proposition. If m = 1, if (ξ1, τ1) satisfies the density hypothesis
with respect to F∞, then the G∗1-optional splitting formula holds
at τ1 with respect to F.
Proof There exists a probability measure Q′ equivalent to Q,
under which (ξ1, τ1) is independent of F∞. We need only to prove
the lemma under Q′.
Let X be a bounded random variable in σ(ξ1, τ1). Let Y be a
bounded random variable in F∞. With independence, we can check
that the process Q′[XY |G∗t ], t ≥ 0, satisfies the G∗1-optional
splitting formula at τ1.
Now to complet the proof of the lemma, we only need to repeat
the argument in [Dellecherie-Meyer Chapter XX, section 22].



Multiple random times with marks
Mathematic induction

Proposition. Suppose that ((τ1, ξ1) . . . , (τm, ξm)) satisfies the
positive density hypothesis with respect to F∞. Then, (τm, ξm)

satisfies the positive density hypothesis with respect to G∗(m−1)
∞ .

For any 1 ≤ k < m, ((τ1, ξ1) . . . , (τk , ξk)) satisfies the positive
density hypothesis with respect to F∞.
By the theorem of induction, we conclude.
Theorem. If the marked times ((ξ1, τ1), . . . , (ξm, τm)) satisfy the
positive density hypothesis with respect to F∞, then, G∗m-optional
splitting formula holds at times τ1, . . . , τm with respect to F.

Conclusion. The use in the literature of the optional splitting
formula is justified, because it was always used under the density
hypothesis.
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