
Optimal Transportation and Model-free hedging
Martingale Version of the 1-dim Brenier Theorem

Multi-marginals Martingale Optimal Transportation

Martingale Optimal transport

Nizar Touzi
Ecole Polytechnique

Joint work with Pierre Henry-Labordère and Xiaolu Tan

Angers, September 8, 2013

Nizar Touzi Martingale Optimal transport



Optimal Transportation and Model-free hedging
Martingale Version of the 1-dim Brenier Theorem

Multi-marginals Martingale Optimal Transportation

The Monge-Kantorovitch optimal transport problem
Financial interpretation
Martingale Transportation Problem

Outline

1 Optimal Transportation and Model-free hedging
The Monge-Kantorovitch optimal transport problem
Financial interpretation
Martingale Transportation Problem

2 Martingale Version of the 1-dim Brenier Theorem
Monotone Martingale Transport
An explicit version of Brenier Theorem

3 Multi-marginals Martingale Optimal Transportation
Martingale Transportation under finitely many marginals
constraints
Continuous-Time Limit

Nizar Touzi Martingale Optimal transport



Optimal Transportation and Model-free hedging
Martingale Version of the 1-dim Brenier Theorem

Multi-marginals Martingale Optimal Transportation

The Monge-Kantorovitch optimal transport problem
Financial interpretation
Martingale Transportation Problem

Analytic formulation (Monge 1781)

• Initial distribution : probability measure µ

• Final distribution : probability measure ν

Problem : find an optimal transference plan T ∗

PM
2 := sup

T∈T (µ,ν)

∫
c
(
x ,T (x)

)
µ(dx)

where T (µ, ν) of all maps T : x 7−→ y = T (x) such that

ν = µ ◦ T−1
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Probabilistic formulation (Kantorovich 1942)

Randomization of transference plans :

P
K
2 := sup

P∈P2(µ,ν)

∫
c(x , y)P(dx , dy)

where P2(µ, ν) is the collection of all joint probability measures
with marginals µ and ν

Example : c(x , y) = −|x − y |2 =⇒ maximization of correlations :

sup
P∈P2(µ,ν)

EP[XY ]
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Kantorovich duality

Duality in linear programming, Legendre-Fenchel duality...

D0
2 := inf

(ϕ,ψ)∈D0
2

∫
ϕdµ+

∫
ψdν

D0
2 :=

{
(ϕ,ψ) : ϕ+ ∈ L1(µ), ψ+ ∈ L1(ν), ϕ⊕ ψ ≥ c

}
where ϕ⊕ ψ(x , y) := ϕ(x) + ψ(y)

• Inequality D0
2 ≥ PK

2 obvious

• Reverse inequality needs Hahn-Banach theorem
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One-dimensional Version of the Brenier Theorem

Rachev and Rüschendorf
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Back to the original Monge formulation

• PK
2 ≥ PM

2 : Kantorovitch formulation ≡ relaxation of Monge one

Theorem (Y. Brenier)

Let c ∈ C 1 with cxy > 0. Assume µ has no atoms. Then there is a
unique optimal transference plan :

P∗(dx , dy) = µ(dx)δ{T∗(x)}(dy) with T ∗ = F−1
ν ◦ Fµ

Consequently PM
2 = PK

2 , and T ∗ solves both problems.

• T ∗ : monotone rearrangement, Frechet-Hoeffding coupling

• cxy > 0 : Spence-Mirrlees condition
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On the Spence Mirrlees condition

The solution of the Kantorovitch optimal transportation problem

P
K
2 := sup

P∈P2(µ,ν)

∫
c(x , y)P(dx , dy)

is not modified by the change of performance criterion :

c(x , y) −→ ĉ(x , y) := c(x , y) + a(x) + b(y)

Notice that the Spence Mirrlees condition cxy > 0 is stable by this
transformation
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Lower bound

Set c̄(x̄ , y) := −c(−x̄ , y). Then

inf
P∈P2(µ,ν)

EP[c(X ,Y )] = − sup
P∈P2(µ,ν)

EP[c̄(−X̄ ,Y )]

where

• X̄ := −X ∼ µ̄ with c.d.f. Fµ̄(x̄) := 1− Fµ(−x̄)

• c̄ satisfies the Spence Mirrlees condition, whenever c does. So,
the lower bound is attained by the anti-monotone transference
plan :

P∗(dx , dy) := µ(dx)δ{T∗(x)}(dy), T∗(x) := F−1
ν ◦ Fµ̄

Nizar Touzi Martingale Optimal transport



Optimal Transportation and Model-free hedging
Martingale Version of the 1-dim Brenier Theorem

Multi-marginals Martingale Optimal Transportation

The Monge-Kantorovitch optimal transport problem
Financial interpretation
Martingale Transportation Problem

Financial Interpretation

Nizar Touzi Martingale Optimal transport



Optimal Transportation and Model-free hedging
Martingale Version of the 1-dim Brenier Theorem

Multi-marginals Martingale Optimal Transportation

The Monge-Kantorovitch optimal transport problem
Financial interpretation
Martingale Transportation Problem

Financial interpretation

• X ∼ µ and Y ∼ ν prices of two assets at time 1

• µ and ν identified from market prices of call options :

Cµ(K ) =

∫
(x − K )+µ(dx), Cν(K ) =

∫
(y − K )+ν(dy)

(Breeden-Litzenberger 1978)

• c(X ,Y ) payoff of derivative security

• Robust bounds on dervative’s price :

inf
P∈P2(µ,ν)

EP[c(X ,Y )] and sup
P∈P2(µ,ν)

EP[c(X ,Y )]
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Financial interpretation of the dual problem

• ϕ(X ), ψ(Y ) : optimal Vanilla position in Assets X and Y

• Can be expressed as a combination of calls/puts (Carr-Madan) :

g(s) = g(s∗)+(s−s∗)g ′(s∗)+

∫ s∗

0
(K−s)+g ′′(K )dK+

∫ ∞
s∗

(s−K )+g ′′(K )dK

so their market market prices are
∫
ϕdµ and

∫
ψdν

•With D0
2 :=

{
(ϕ,ψ) : ϕ+ ∈ L1(µ), ψ+ ∈ L1(ν), ϕ⊕ ψ ≥ c

}
:

D0
2 = inf

(ϕ,ψ)∈D0
2

∫
ϕ(x)µ(dx) +

∫
ψ(y)ν(dy)

is the cheapest static position in X and Y so as to superhedge
c(X ,Y )
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One asset observed at two future dates

Our interest now is on the case where

X = X0 and Y = X1

are the prices of the same asset at two future dates 0 and 1

Interest rate is reduced to zero

This setting introduces a new feature :
the possibility of dynamic trading the asset between times 0
and 1
duality converts this possibility into the martingale condition
EP[Y |X ] = X
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Superhedging problem ≡ Kantorovitch dual

Robust super hedging problem naturally formulated as :

v0 = D2(µ, ν) = inf
(ϕ,ψ,h)∈D2

{
µ(ϕ) + ν(ψ)

}
where µ(ϕ) =

∫
ϕdµ, µ(ψ) =

∫
ψdν, and

D2 :=
{

(ϕ,ψ, h) : ϕ+ ∈ L1(µ), ψ+ ∈ L1(ν), h ∈ L0

ϕ⊕ ψ + h⊗ ≥ c
}

ϕ⊕ ψ(x , y) := ϕ(x) + ψ(y) and h⊗(x , y) := h(x)(y − x)
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The Martingale Optimal Transportation Problem

The corresponding dual problem is :

P2(µ, ν) := sup
P∈M2(µ,ν)

EP[c(X ,Y )
]

whereM2(µ, ν) :=
{
P ∈ P2(µ, ν) : EP[Y |X ] = X

}
and we recall P2(µ, ν) :=

{
P ∈ PR2 : X ∼P µ,Y ∼P ν

}
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Implication of the convex ordering

Strassen 1965 :M2(µ, ν) 6= ∅ iff µ and ν have same mean and
µ � ν (convex), i.e. with δF := Fν − Fµ∫

δF (ξ)dξ = 0 and for all k
∫

(−∞,k)
δF (ξ)dξ ≥ 0
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Worst Case Financial Market – Brenier Theorem

• The solution P∗ ∈M2(µ, ν) always exists

• Question 1 : Is there an optimal transfert map, i.e. optimal
transport of µ to ν through a map T ∗ ? (Brenier Theorem)

Can not be a map, unless µ = ν !

• Question 2 : Is there a transference plan along a minimal
randomization

Y = Tu(X ) with probability q(X )

X ��
��1

PPPPq Y = Td(X ) with probability 1− q(X )
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Previous literature : Beiglbock and Juillet (2012)

Definition
P ∈M2(µ, ν) is left-monotone if P[(X ,Y ) ∈ Γ] = 1, for some
Γ ⊂ R× R, and

for all (x , y1), (x , y2), (x ′, y ′) ∈ Γ : x < x ′ =⇒ y ′ 6∈ (y1, y2)

Theorem
There exists a left-monotone martingale transport
Assume µ has no atoms. Then, any left-monotone
P ∈M2(µ, ν) is concentrated on two graphs

P = µ(dx)
[
q(x)δ{Tu(x)}(dy)(1− q)(x)δ{Td (x)}(dy)

]
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Previous literature : Beiglbock and Juillet (2012)

Theorem
µ2 � µ1, µ1 without atoms. Then :
(i) there exists a unique left-monotone transport plan P∗
(ii) P∗ is a solution P2(µ, ν) in the following cases :

c(x , y) = h(x − y) with h′ strictly convex,
c(x , y) = ϕ(x)ψ(y), ϕ,ψ ≥ 0, ψ strict convex, ϕ decreasing

Our objective :
explicit derivation of P∗

extend the class of couplings c for which P∗ is optimal
extend to the multi-marginals case
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Explicit left-monotone transference plan

Theorem
Let µ, ν have finite first moment, same mean, µ � ν, and µ
without atoms. Then, the unique left-monotone transference plan is

P∗(dx , dy) =
[
q(x)δTd (x)(dx) + (1− q)(x)δTu(x)(dx)

]
µ(dx)

where Tu,Td are explicitly defined as follows...
In particular, outside jumps, Tu and Td solve the following ODEs :

d(δF ◦ Td) = (1− q)dFµ, d(Fν ◦ Tu) = qdFµ
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Duality and explicit Martingale Version of the Brenier
Theorem

Theorem
Let µ, ν have finite first moment, same mean, µ � ν, and µ
without atoms. Assume that cxyy > 0. Then

P2 = D2

and there is an explicit dual optimizer (ϕ∗, ψ∗, h∗) defined as
follows...
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The martingale version of the Spence-Mirrlees condition

... is cxyy > 0 :

• Notice that the solution of the Martingale Transport problem is
not altered by the change of performance criterion :

c(x , y) −→ ĉ(x , y) := c(x , y) + a(x) + b(y) + h(x)(y − x)

• ĉxyy = cxyy

• The conditions of Beiglbock and Juillet :
c(x , y) = h(x − y) with h′ strictly convex,
c(x , y) = ϕ(x)ψ(y), ϕ,ψ ≥ 0, ψ strict convex, ϕ decreasing

satisfy cxyy > 0
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Lower bound

Suppose cxyy > 0. Then

c̄(x̄ , ȳ) := −c(−x̄ ,−ȳ) satisfies c̄x̄ ȳ ȳ > 0

We exploit this symmetry to derive the lower bound :

inf
P∈M2(µ,ν)

EP[c(X ,Y )
]

= − sup
P∈M2(µ,ν)

EP[c̄(X̄ , Ȳ )
]

= EP∗
[
c(X ,Y )

]
where P∗ is the left-monotone transference plan constructed from

Fµ̄(x̄) := 1− Fµ(−x̄) and Fν̄(ȳ) := 1− Fν(−ȳ−)
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Construction : One local maximizer of δF

Easy case : Tu ↗ and Td ↘ after m1, and

P∗(dx , dy) = µ0(dx)
[
q(x)δ{Tu(x)}(dy) + (1− q(x))δ{Td (x)}(dy)

]
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Martingale transportation constraints

• First marginal is µ0, Martingale condition holds if q ∈ [0, 1]

• Second marginal :
either y ≤ m1, then
P∗[Y ∈ dy ] = dFµ(y) + E

[
(1− q)(X )1I{Td (X )∈dy}

]
. So

Y ∼P∗ ν with decreasing Td implies

d(δF ◦ Td) = −(1− q)dFµ,

or y ≥ m1, then P∗[Y ∈ dy ] = E
[
q(X )1I{Tu(X )∈dy}

]
. So

Y ∼P∗ ν with increasing Tu implies that

d(Fν ◦ Tu) = qdFµ.
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The Kantorovitch Dual Side

So far, we have :

EP∗ [c(X ,Y )] ≤ sup
M2(µ,ν)

EP[c(X ,Y )] ≤ inf
D2

{
µ(ϕ) + ν(ψ)

}
Our next goal is to construct

(ϕ∗, ψ∗, h∗) ∈ D2 such that µ(ϕ∗) + ν(ψ∗) = EP∗ [c(X ,Y )]

In particular, this would imply duality and existence hold

=⇒ ϕ∗(X ) + ψ∗(Y ) + h∗(X )(Y − X )− c(X ,Y ) = 0, P∗−a.s.

=⇒ ϕ∗(x) = maxy∈R{c(x , y)− ψ∗(y)− h∗(x)(y − x)}, x ∈ R
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Multiple local maxima of δF
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Finitely many marginals martingale transportation

• Extension to finite discrete-time is immediate :
µi have same mean, and µn � . . . � µ0

Optimal transportation with n marginals constraint :

Pn(µ) = sup
P∈Mn(µ)

EP[c(X )], c(x1, . . . , xn) =
n−1∑
i=1

c i (xi , xi+1)

The dual problem :

Dn(µ) := inf
(u,h)∈Dn

n∑
i=1

µi (ui ),

where

Dn :=
{

(u, h) : (ui )
+ ∈ L1(µi ) and ⊕n

i=1 ui +
∑n−1

i=1 h⊗
i

i ≥ c
}
.
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Martingale Transportation under finitely many marginals
constraints

Theorem
Suppose µ1 � . . . � µn in convex order, with finite first moment,
same mean, and µ1, . . . , µn−1 have no atoms. Assume further that
c ixyy > 0. Then, the strong duality holds, the transference plan

P∗n(dx) = µ1(dx1)
∏n−1

i=1 T i
∗(xi , dxi+1)

is optimal for the martingale transportation problem Pn(µ), and
(u∗, h∗) is optimal for the dual problem Dn(µ)

Example : applies to the discrete monitoring variance swap :
c(x1, . . . , xn) :=

∑n
i=1
(
ln xi

xi−1

)2
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One maximizer m of Fµ1 − Fµ0 : first asymptotics

Suppose Fµ1(x) = Fµ0(x) + εδ(x) + ◦(ε)

Lemma
T ε
u (x) = x + εju(x) + ◦(ε) and T ε

d (x) = x − jd(x) + O(ε), where

ju(x) :=
δ(x − jd(x))− δ(x)

fµ0(x)
and

∫ x

x−jd (x)
(x − ξ)δ(ξ)dξ = 0
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Assumptions

Assumption (µt)t∈[0,1] have finite first moment, nondecreasing
in convex order, with smooth cdf F (t, x), and

• x 7−→ ∂tF (t, x) has a unique C 0 maximizer m(t)

• x 7−→ F (t + h, x)− F (t, x) has a unique maximizer mh(t),
mh −→ m, uniformly

• f (t, x) := ∂xF (t, x) > 0 on its support (`t , rt)
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The continuous-time dynamics

• πn : 0 = tn0 < · · · < tnn = 1 with |πn| := maxi |tni − tni−1| −→ 0

• X n :=
(
X n
tni

)
0≤i≤n discrete time Markov martingale ∼ P∗n

Theorem
X n −→ X ∗, weakly. X ∗ is a pure (downward) jump martingale :

dX ∗t = 1I{Xt−>m(t)}jd(t,Xt−)(dNt − νtdt),

νt := ju
jd

(t,Xt−)1I{Xt−>m(t)}, and N is a pure jump process with
predictable compensator ν. Moreover :

X ∗t ∼ µt for all t ∈ [0, 1]
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Examples of Peacocks

X ∗ is a Peacock (PCOC) in the terminology of Yor

• Fake Brownian motion : µt = N (0, t), m(t) = −
√
t

• self-similar martingales : {Mc2t , t ≥ 0} ∼ {cMt , t ≥ 0}...

Madan and Yor (2002)
Hamza and Klebaner (2007)
Oleszkiewicz (2008)
Hirsch, Profeta, Roynette, Yor (2011)
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Model-free super hedging strategy in continuous-time

Theorem
Let c(x , x) = cy (x , x) = 0, and cxyy > 0. Then, there exist explicit
functions h∗(t, x), φ∗0(x), φ∗1(x), and φ∗(t, x) such that

φ∗0(X0) + φ∗1(X1) +
∫ 1
0 φ
∗(t,Xt)dt +

∫ 1
0 h∗(t,Xt)dXt

≥ ξ(X.) := 1
2

∫ 1
0 cyy (Xt ,Xt)d [X c ]t +

∑
0<t≤1 c(Xt−,Xt)

in the sense of
quasi-sure stochastic analysis, i.e. P−a.s. for all martingale
measure P
pathwise Föllmer Itô calculus (under additional smoothness)
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Cheapest Model-Free Superhedging

Theorem
Under all previous conditions, P = D. Moreover
• P∗ solution of P
• (φ∗, h∗) explicit solution of D
• Cheapest superhedging cost for the path-dependent option ξ(X.) :

P = D =

∫ 1

0

ju
jd

(t, x)c(x , x − jd(t, x))f (t, x) dx dt
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An extremal Peacock

Unlike the examples in the previous literature on Peacocks
(Hamza & Klebaner, Oleszkiewicz,
Hirsch-Profeta-Roynette-Yor), our Peacock X ∗ enjoys an
optimality property with respect to the criterion defined by c

Results of this type were also obtained by Hobson and Klimmek
(2012), and Hobson (2013)
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