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Analytic formulation (Monge 1781)

e Initial distribution : probability measure p
e Final distribution : probability measure v

Problem : find an optimal transference plan T*

PM .= sup /C(X, T(x))p(dx)

TeT (1)

where T (u,v) of all maps T : x — y = T(x) such that
v = poT?
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Probabilistic formulation (Kantorovich 1942)

Randomization of transference plans :

ﬁf ‘= sup /c(x,y)IP(dx,dy)
PePo(p,v)

where Py (u, ) is the collection of all joint probability measures
with marginals i, and v

Example : ¢(x,y) = —|x — y|?> = maximization of correlations :
sup  EF[XY]
PePa(p,v)
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Kantorovich duality

Duality in linear programming, Legendre-Fenchel duality...

DY - inf /apd,u,—l-/wdu

(p:9)€DI
D = {(p¥): ¢t €L (n), vt e L (v),p @ v > c}

where ¢ & ¥(x,y) == ¢(x) +¥(y)
. 0 K .
e Inequality D; > P;' obvious

e Reverse inequality needs Hahn-Banach theorem
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One-dimensional Version of the Brenier Theorem

Rachev and Riischendorf
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Back to the original Monge formulation

e PS> PM . Kantorovitch formulation = relaxation of Monge one
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Back to the original Monge formulation

e PS> PM . Kantorovitch formulation = relaxation of Monge one

Theorem (Y. Brenier)

Let c € C with ¢,y > 0. Assume p has no atoms. Then there is a
unique optimal transference plan :

P*(dx, dy) = M(dX)(S{T*(X)}(dy) with T* = Fy_l oF,

Consequently PM = PX, and T* solves both problems.
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Back to the original Monge formulation

e PS> PM . Kantorovitch formulation = relaxation of Monge one

Theorem (Y. Brenier)

Let c € C with ¢,y > 0. Assume p has no atoms. Then there is a
unique optimal transference plan :

P*(dx, dy) = M(dX)(S{T*(X)}(dy) with T* = Fy_l oF,

Consequently PM = PX, and T* solves both problems.

e T* : monotone rearrangement, Frechet-Hoeffding coupling
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Back to the original Monge formulation

e PS> PM . Kantorovitch formulation = relaxation of Monge one

Theorem (Y. Brenier)

Let c € C with ¢,y > 0. Assume p has no atoms. Then there is a
unique optimal transference plan :

P*(dx, dy) = M(dX)(S{T*(X)}(dy) with T* = Fy_l oF,

Consequently PM = PX, and T* solves both problems.

e T* : monotone rearrangement, Frechet-Hoeffding coupling

e c,, > 0 : Spence-Mirrlees condition lﬂ
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On the Spence Mirrlees condition

The solution of the Kantorovitch optimal transportation problem

Py = sup /C(X,y)ﬂ”(dx?dy)
PeP2(p,v)

is not modified by the change of performance criterion :
c(xy) — &(xy):=c(x,y)+a(x) + by)

Notice that the Spence Mirrlees condition c,, > 0 is stable by this
transformation
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Lower bound

Set ¢(x,y) := —c(—X,y). Then

inf  E°[c(X,Y)] = — sup EF[e(—X,Y)]
PePa(p,v) PePo(u,v)

where
o X := —X ~ ji with c.df. Fz(X) :=1— F,(—X)
e C satisfies the Spence Mirrlees condition, whenever ¢ does. So,

the lower bound is attained by the anti-monotone transference
plan :

P.(dx, dy) := p(dx)d(r, e (dy),  Tulx):=F, 1o Fy "
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Financial interpretation

e X ~ yand Y ~ v prices of two assets at time 1
e 1, and v identified from market prices of call options :
GK) = [e= K@), k) = [ = K) (ay)
(Breeden-Litzenberger 1978)
e c(X,Y) payoff of derivative security

e Robust bounds on dervative's price :

inf  EF[c(X,Y)] and sup  EF[c(X,Y)]
PeP(p,v) PePo(p,v) lﬂ
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Financial interpretation of the dual problem

e o(X),¥(Y) : optimal Vanilla position in Assets X and Y

e Can be expressed as a combination of calls/puts (Carr-Madan) :
8(5) = (") +(5—5)g/ () + [ (K=s)" g (K)aK+ [ (s-K) ¢ (K)aK

s*

so their market market prices are [ pdu and [¢dv

o With D := {(¢, ) : ¢ € LY (p), v+ € LY (v), o Bt > c} :

pp = inf [ etau(@)+ [wma)

is the cheapest static position in X and Y so as to superhedge lﬂ
c(X,Y)
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One asset observed at two future dates

Our interest now is on the case where
X = XO and Y = X1
are the prices of the same asset at two future dates 0 and 1

Interest rate is reduced to zero

This setting introduces a new feature :

@ the possibility of dynamic trading the asset between times 0
and 1

@ duality converts this possibility into the martingale condition
EP[Y|X] = X
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Superhedging problem = Kantorovitch dual

Robust super hedging problem naturally formulated as :

vo = Do(pv) = inf {ule)+v(v)}

(%%h)GDz

where 1(¢) = [ pdu, p(y) = [dv, and

D= {(p,9,h) : ot eLi(p),v* €eL(v),helf
Y+ h? >c}

P Y(x,y) = p(x) +¥(y) and h¥(x,y) := h(x)(y — x)
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The Martingale Optimal Transportation Problem

The corresponding dual problem is :

Py(p,v) = sup EP[C(X,Y)]
PeMa(u,v)

where Mo (p,v) == {P € Pa(p,v) : E'[Y|X] = X}

and we recall Po(p,v) := {P € Pgz: X ~p p1, Y ~p v}
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Implication of the convex ordering

Strassen 1965 : Moa(u,v) # 0 iff © and v have same mean and
p = v (convex), i.e. with 0F := F, — F,

/5F(£)d§ =0 and for all k / IF(&)dE >0

(706,[()

\mu <=\nu in convex order

delta F = F_\nu -F_\mu

B s

\J K
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Monotone Martingale Transport

Martingale Version of the 1-dim Brenier Theorem v el eeratemn G Eiafcn Temmes

Worst Case Financial Market — Brenier Theorem

e The solution P* € M>(u,v) always exists

e Question 1 : Is there an optimal transfert map, i.e. optimal
transport of i to v through a map T*7 (Brenier Theorem)

Can not be a map, unless = v
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Martingale Version of the 1-dim Brenier Theorem v el eeratemn G Eiafcn Temmes

Worst Case Financial Market — Brenier Theorem

e The solution P* € M>(u,v) always exists

e Question 1 : Is there an optimal transfert map, i.e. optimal
transport of i to v through a map T*7 (Brenier Theorem)

Can not be a map, unless = v

e Question 2 : Is there a transference plan along a minimal
randomization

Y = T,(X) with probability q(X)
X <

Y = Ty(X) with probability 1 — g(X)
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Martingale Version of the 1-dim Brenier Theorem v el eeratemn G Eiafcn Temmes

Previous literature : Beiglbock and Juillet (2012)

P € My(u,v) is left-monotone if P[(X, Y) € 'l = 1, for some
F'cR xR, and

/

= ¥ € (y1,y2)

@ There exists a left-monotone martingale transport

for all (X7y1)7 (X,}Q),(X’,y’) eln: x<x

@ Assume i has no atoms. Then, any left-monotone
P € M>(u,v) is concentrated on two graphs

P = u(dx) [g(x)0¢ 7,3 (dy)(1 = @) (x)01 7, (x)3 (dY)]
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Martingale Version of the 1-dim Brenier Theorem Monoto_n_e Mart.lngale Tranlsport
An explicit version of Brenier Theorem

Previous literature : Beiglbock and Juillet (2012)

Theorem

lo = 1, 11 without atoms. Then :
(i) there exists a unique left-monotone transport plan P*
(ii) P* is a solution Py(,v) in the following cases :

e c(x,y) = h(x — y) with b strictly convex,
o c(x,y) = p(x)¥(y), p,v >0, ¢ strict convex, ¢ decreasing

Our objective :
@ explicit derivation of P*
@ extend the class of couplings ¢ for which P* is optimal

@ extend to the multi-marginals case
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Monotone Martingale Transport

Martingale Version of the 1-dim Brenier Theorem o il ot 6 Bhenity s

Explicit left-monotone transference plan

Theorem

Let u,v have finite first moment, same mean, u < v, and [
without atoms. Then, the unique left-monotone transference plan is

P*(dx, dy) = [q(x)d700(dx) + (1 = q)(x)7;x)(dx)] p(dx)

where T,, Ty are explicitly defined as follows...
In particular, outside jumps, T, and T4 solve the following ODEs :

d(5F o T4) = (1 — q)dF,, d(F, o T,) = qdF,
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Duality and explicit Martingale Version of the Brenier
Theorem

Theorem

Let i, v have finite first moment, same mean, i < v, and
without atoms. Assume that c,,, > 0. Then

P> = Dy

and there is an explicit dual optimizer (p*, ", h*) defined as
follows...
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The martingale version of the Spence-Mirrlees condition

08 Gy >0

e Notice that the solution of the Martingale Transport problem is
not altered by the change of performance criterion :

c(x,y) — &(x,y) = c(x,y)+ a(x) + b(y) + h(x)(y — x)
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The martingale version of the Spence-Mirrlees condition

08 Gy >0

e Notice that the solution of the Martingale Transport problem is
not altered by the change of performance criterion :

c(x,y) — &(x,y) = c(x,y)+ a(x) + b(y) + h(x)(y — x)

® Cxyy = Cxyy
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Martingale Version of the 1-dim Brenier Theorem o il ot 6 Bhenity s

The martingale version of the Spence-Mirrlees condition

08 Gy >0

e Notice that the solution of the Martingale Transport problem is
not altered by the change of performance criterion :

c(x,y) — &(x,y) = c(x,y)+ a(x) + b(y) + h(x)(y — x)
® &y = Coy

e The conditions of Beiglbock and Juillet :
e c¢(x,y) = h(x — y) with h’ strictly convex,
o c(x,y) = p(x)¥(y), p,1 >0, 9 strict convex, ¢ decreasing
satisfy ¢y, >0 Aﬂ
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An explicit version of Brenier Theorem

Lower bound

Suppose ¢y, > 0. Then
c(x,y) == —c(—X%,—y) satisfies Czyy >0
We exploit this symmetry to derive the lower bound :
e = (VI = = s | ETIE(X )]
= E"[c(X,Y)]
where P, is the left-monotone transference plan constructed from

Fa(X):=1— Fy(—%) and Fp(7):=1— F(—y-)
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Martingale Version of the 1-dim Brenier Theorem o il ot 6 Bhenity s

Construction : One local maximizer of 6 F

Easy case : T, " and T4\, after my, and
P*(dx,dy) = po(dx)[q(x)d¢7,c03(dy) + (1 — a(x))dg7, )3 (dy)]
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Martingale Version of the 1-dim Brenier Theorem o il ot 6 Bhenity s

Martingale transportation constraints

e First marginal is 19, Martingale condition holds if g € [0, 1]
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Martingale transportation constraints

e First marginal is 19, Martingale condition holds if g € [0, 1]

e Second marginal :

@ either y < mq, then

P.[Y € dy] = dF.(y) + E[(1 — 9)(X) {1, (x)edy}] - SO
Y ~p, v with decreasing T, implies

d(0Fo Ty) = —(1-q)dF,,
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Martingale Version of the 1-dim Brenier Theorem CTUEHUL) LTS UELET X
An explicit version of Brenier Theorem

Martingale transportation constraints

e First marginal is 19, Martingale condition holds if g € [0, 1]

e Second marginal :
@ either y < mq, then

P.[Y € dy] = dF.(y) + E[(1 — 9)(X) {1, (x)edy}] - SO
Y ~p, v with decreasing T, implies

d(0Fo Ty) = —(1-q)dF,,

@ or y > my, then P,[Y € dy] = E[Q(X)]I{Tu(x)edy}]- So
Y ~p, v with increasing T, implies that

d(FI/ o Tu) = quN'
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The Kantorovitch Dual Side

So far, we have :

Bl < s BLOGCYILS igf () + ()

Our next goal is to construct
(04,94, hs) € Do such that  p(ix) + v(¥) = E™[e(X, V)]

In particular, this would imply duality and existence hold
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The Kantorovitch Dual Side

So far, we have :

Bl < s BLOGCYILS igf () + ()

Our next goal is to construct
(04,94, hs) € Do such that  p(ix) + v(¥) = E™[e(X, V)]

In particular, this would imply duality and existence hold

= (X)) + u(Y) + h(X)(Y = X) — (X, Y) =0, P,—as.
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Martingale Version of the 1-dim Brenier Theorem o il ot 6 Bhenity s

The Kantorovitch Dual Side

So far, we have :

Bl < s BLOGCYILS igf () + ()

Our next goal is to construct
(04,94, hs) € Do such that  p(ix) + v(¥) = E™[e(X, V)]

In particular, this would imply duality and existence hold
= (X)) + V(YY) + h(X)(Y = X) —c(X,Y) =0, P,—as.

= @u(x) = maxyer{c(x,y) — Yu(y) — h(X)(y — x)}, x €R
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Multiple local maxima of 0 F

Tu
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-
|
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Finitely many marginals martingale transportation

e Extension to finite discrete-time is immediate :
@ u; have same mean, and pu, = ... > uo
@ Optimal transportation with n marginals constraint :

n—1

Pa() = sup EF[c(X)],  c(xt,....xn) = Z (%1, xip1)

@ The dual problem :

Dp(p) = inf Z,u, up),

(u,h)eDy Py

where

Dy = {(u,h) : (u)T € LY () and @7 uj+ S0 hE > ¢}
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Martingale Transportation under finitely many marginals
constraints

Theorem

Suppose 11 < ... = un in convex order, with finite first moment,

same mean, and p1, ..., tn—1 have no atoms. Assume further that
Cyyy > 0. Then, the strong duality holds, the transference plan

P (dx) = pa(dx) TI721 Ti(xi, dxign)

is optimal for the martingale transportation problem P,(1), and
(u*, h*) is optimal for the dual problem D,(u)
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Martingale Transportation under finitely many marginals
constraints

Theorem

Suppose 11 < ... = un in convex order, with finite first moment,

same mean, and p1, ..., tn—1 have no atoms. Assume further that
Cyyy > 0. Then, the strong duality holds, the transference plan

P (dx) = pa(dx) TI721 Ti(xi, dxign)

is optimal for the martingale transportation problem P,(1), and
(u*, h*) is optimal for the dual problem D,(u)

Example : applies to the discrete monitoring variance swap :

(Xt xn) = S0y (In 25)° pk
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Multi-marginals Martingale Optimal Transportation

Continuous-Time Limit
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Martingale Transportation under finitely many marginals const
Continuous-Time Limit

Multi-marginals Martingale Optimal Transportation

One maximizer m of F,, — F,, : first asymptotics

Suppose F, (x) = Fjo(x) +€d(x) + o(e)

T5(x) = x4+ gju(x) + o(e) and T5(x) = x — jy(x) + O(e), where

_ d(x — ja(x)) — o(x

u(x) : ) and ) x—£)6(§)dE =0
) JARCRORGLE

fuuo (%)
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Assumptions

Assumption  (pt)¢efo,1) have finite first moment, nondecreasing
in convex order, with smooth cdf F(t, x), and

e x — O0;F(t,x) has a unique C® maximizer m(t)

e x — F(t + h,x) — F(t,x) has a unique maximizer m"(t),
m" —s m, uniformly

o f(t,x) = 0xF(t,x) > 0 on its support (¢, r¢)
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The continuous-time dynamics

e 0=t <--- <t] =1with |7 := max; [t! —t" ;| — 0

discrete time Markov martingale ~ P

o X" := (Xt’,}’)ogign

Theorem
X" — X*, weakly. X* is a pure (downward) jump martingale :

dXt* = ]I{Xt_>m(t)}jd(t,Xt_)(dNt = I/tdt),

Uy 1= j';Z(t:th)]I{Xt,>m(t)}r and N is a pure jump process with
predictable compensator v. Moreover :

X ~ pe forall te]0,1] lﬂ
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Examples of Peacocks

X* is a Peacock (PCOC) in the terminology of Yor

e Fake Brownian motion : u; = N'(0,t), m(t) = —/t

o self-similar martingales : {M.2;,t > 0} ~ {cM;, t > 0}...
Madan and Yor (2002)

Hamza and Klebaner (2007)

Oleszkiewicz (2008)
Hirsch, Profeta, Roynette, Yor (2011)
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Model-free super hedging strategy in continuous-time

Let c(x,x) = ¢,(x,x) =0, and ¢y, > 0. Then, there exist explicit
functions h*(t, x), ¢§(x), #3(x), and ¢*(t,x) such that
B5(%0) +01(X0) + Jo #"(8, Xe)dt + [ b (£, Xe)dXe
> €(X) =4[5 6y (Xe, Xe)dIX e + gc ey €(Xem, Xe)
in the sense of

@ quasi-sure stochastic analysis, i.e. P—a.s. for all martingale
measure P

e pathwise Féllmer Ité calculus (under additional smoothness)
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Multi-marginals Martingale Optimal Transportation

Cheapest Model-Free Superhedging

Theorem

Under all previous conditions, P = D. Moreover

e P* solution of P

o (¢*, h*) explicit solution of D

e Cheapest superhedging cost for the path-dependent option §(X)) :

1 .
P—D-= / 2t x)c(x = Jal X)) () e e
0 Jd
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Multi-marginals Martingale Optimal Transportation G- s (L

An extremal Peacock

Unlike the examples in the previous literature on Peacocks
(Hamza & Klebaner, Oleszkiewicz,
Hirsch-Profeta-Roynette-Yor), our Peacock X* enjoys an
optimality property with respect to the criterion defined by ¢

Results of this type were also obtained by Hobson and Klimmek
(2012), and Hobson (2013)
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